NIPS Proceedingsβ

A Convergence Analysis of Log-Linear Training

Part of: Advances in Neural Information Processing Systems 24 (NIPS 2011)

[PDF] [BibTeX]

Authors

Abstract

Log-linear models are widely used probability models for statistical pattern recognition. Typically, log-linear models are trained according to a convex criterion. In recent years, the interest in log-linear models has greatly increased. The optimization of log-linear model parameters is costly and therefore an important topic, in particular for large-scale applications. Different optimization algorithms have been evaluated empirically in many papers. In this work, we analyze the optimization problem analytically and show that the training of log-linear models can be highly ill-conditioned. We verify our findings on two handwriting tasks. By making use of our convergence analysis, we obtain good results on a large-scale continuous handwriting recognition task with a simple and generic approach.