NIPS Proceedingsβ

Optimal Reinforcement Learning for Gaussian Systems

Part of: Advances in Neural Information Processing Systems 24 (NIPS 2011)

[PDF] [BibTeX]

Authors

Abstract

The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finite-dimensional projection gives an impression for how this result may be helpful.