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Abstract

Minwise hashing is a standard technique in the context afckefar efficiently
computing set similarities. The recent developmerttbit minwise hashing pro-
vides a substantial improvement by storing only the lowdsits of each hashed
value. In this paper, we demonstrate thétit minwise hashing can be natu-
rally integrated with linear learning algorithms such aseér SVM and logistic
regression, to solve large-scale and high-dimensionidgttal learning tasks, es-
pecially when the data do not fit in memory. We compat®t minwise hashing
with the Count-Min (CM) and Vowpal Wabbit (VW) algorithms hich have es-
sentially the same variances as random projections. Oarétieal and empirical
comparisons illustrate thatbit minwise hashing is significantly more accurate (at
the same storage cost) than VW (and random projections)riiarypdata.

1 Introduction

With the advent of the Internet, many machine learning apfibns are faced with very large and
inherently high-dimensional datasets, resulting in @ragjks in scaling up training algorithms and
storing the data. Especially in the context of search anchinadranslation, corpus sizes used in
industrial practice have long exceeded the main memoryaitypaf single machine. For example,
[33] discusses training sets wifld!! items andl10” distinct features, requiring novel algorithmic
approaches and architectures. As a consequence, theredraa benewed emphasis on scaling up
machine learning techniques by using massively paralt#itactures; however, methods relying
solely on parallelism can be expensive (both with regardsai@ware requirements and energy
costs) and often induce significant additional communicedind data distribution overhead.

This work approaches the challenges posed by large datasietgeraging techniques from the area
of similarity search[2], where similar increases in data sizes have made thagg#@nd computa-
tional requirements for computing exact distances praikidithus making data representations that
allow compact storage and efficient approximate similagitgnputation necessary.

The method ob-bit minwise hashing [26-28] is a recent progress for effitye(in both time and
space) computingesemblanceamong extremely high-dimensional (e.%}!) binary vectors. In
this paper, we show thatbit minwise hashing can be seamlessly integrated withalir&upport
Vector Machine (SVM) [13, 18, 20, 31, 35] and logistic reggies solvers.

1.1 Ultra High-Dimensional Large Datasets and Memory Botténecks

In the context of search, a standard procedure to represenntents (e.g., Web pages) is to use
w-shingles (i.e.w contiguous words), where > 5 in several studies [6, 7,14]. This procedure can
generate datasets of extremely high dimensions. For exasyppose we only consided® com-
mon English words. Using: = 5 may require the size of dictionafyto beD = |Q| = 1025 = 283,

In practice,D = 264 often suffices, as the number of available documents mayetarge enough
to exhaust the dictionary. Fas-shingle data, normally only abscence/presence (0/1)rnimdition

is used, as it is known that word frequency distributionshimitdocuments approximately follow
a power-law [3], meaning that most single terms occur ratblgreby making av-shingle is un-
likely to occur more than once in a document. Interestinglgn when the data are not too high-
dimensional, empirical studies [8, 17, 19] achieved goatbpmance with binary-quantized data.

When the data can fit in memory, linear SVM training is oftetrexely efficient after the data are
loaded into the memory. It is however often the case thatydoy large datasets, the data loading



time dominates the computing time for solving the SVM problg85]. A more severe problem
arises when the data can not fit in memory. This situation eacobnmon in practice. The publicly
availablewebspandataset (in LIBSVM format) needs about 24GB disk space, wkicceeds the

memory capacity of many desktop PCs. Note tebspamwhich contains only 350,000 docu-
ments represented by 3-shingles, is still very small coegbs industry applications [33].

1.2 Our Proposal

We propose a solution which leveragebit minwise hashing. Our approach assumes the data
vectors are binary, high-dimensional, and relatively spawhich is generally true of text documents
represented via shingles. We appipit minwise hashing to obtain a compact representatiohef t
original data. In order to use the technique for efficientriéay, we have to address several issues:

e We need to prove that the matrices generateltbiy minwise hashing are positive definite,
which will provide the solid foundation for our proposedigion.

o If we useb-bit minwise hashing to estimate the resemblance, whicloigimear, how can
we effectively convert this nonlinear problem into a linpanblem?

e Compared to other hashing techniques such as random poojgctCount-Min (CM)
sketch [11], or Vowpal Wabbit (VW) [32, 34], does our appro@xhibits advantages?

It turns out that our proof in the next section thdiit hashing matrices are positive definite naturally
provides the construction for converting the otherwiselimear SVM problem into linear SVM.

2 Review of Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing6, 7] has been successfully applied to a wide range of realeyproblems [4,6, 7,
9,10,12,15, 16, 30], for efficiently computing set simif@s. Minwise hashing mainly works well
with binary data, which can be viewed either as 0/1 vectososets. Given two set§;, So C
0 =140,1,2,..., D — 1}, awidely used measure of similarity is tresemblancer:

o |S1 N Sgl - a
T S1USe] T fitfo—a’
Applying a random permutation : @ — Q on S; andSs, the collision probability is simply

_ |S1 M SQ|
|S1U52|

One can repeat the permutatibimes: 71, o, ..., 7, t0 estimateR without bias. The common

practice is to store each hashed value, exgu(7(S7)) andmin(w(S2)), using 64 bits [14]. The

storage (and computational) cost will be prohibitive inyriarge-scale (industry) applications [29].
b-bit minwise hashinf7] provides a strikingly simple solution to this (storaayed computational)

problem by storing only the lowest b bits (instead of 64 kitsdach hashed value.

Wheref1:|51|, f2:|5'2|7 a:|51ﬂ52|. (1)

Pr (min(7(S1)) = min(m(S2)))

=R @)

For convenience, denotg = min (7 (S1)) andzz = min (7 (S2)), and denotezy’) (ng)) the
2)

integer value corresponding to the lowedtits of of z; (z2). For example, ik, = 7, thenz§ =3.
Theorem 1 [27] AssumeD is large.
P, = Pr (ZY’) = ng>) =Cip+(1—Cop)R 3)
=l =B fisis) p=ls)
T2 T1 T1 T2
Lo 1’b7“1 + 72 2’b7“1 + 72 20 1'b7“1 + 72 2'b7“1 + 72
b b
1— ]2t 1 — )2t
A = nlonf 5 Agp = refl—raf _ -
1—[1—mr] 1—[1—r2]

This (approximate) formula (3) is remarkably accuratepdee very smallD; see Figure 1 in [25].
We can then estimatg, (and R) from k& independent permutations:
Var (Pb)

Var (Rb) =TGP %

[Cl,b + (1 — Cg,b)R] [1 — Cl,b — (1 — Cg,b)R]
[1— Coy)?

o P —Cuy
R, =2 ——1b
"= Cay

(4)

It turns out that our method only neefls for linear learning, i.e., no need to explicitly estimate

2



3 Kernels from Minwise Hashing b-Bit Minwise Hashing
Definition: A symmetricn x n matrix K satisfyingzij cic; K > 0, for all real vectors: is called
positive definite (PD)Note that here we do not differentiate PD fraimnnegative definite
Theorem 2 Considerm setsSy, ...,S, € Q ={0,1,..., D — 1}. Apply one permutation to each
set. Define;; = min{x(S;)} andzi(b) the lowesb bits of z;. The following three matrices are PD.

1. Theresemblance matriR € R™*", whose(i, j)-th entry is the resemblance between set

. . |Siﬂ5j‘ . |Siﬂ5j‘
Siand setS;: R = [5.05,] = s, - fsmsT
2. Theminwise hashing matrid € R"*": M;; = 1{z = z;}.

3. Theb-bit minwise hashing matrivI(®) € R*": Mi(;.’) =1 {sz) = zj(.b)}.

Consequently, considér independent permutations and dendm{g the b-bit minwise hashing

matrix generated by the-th permutation. Then the summatigfl';:1 Mg is also PD.

Proof: A matrix A is PD if it can be written as an inner produBTB. Because
D—1
Mz‘j = 1{Zi = Zj} = Z 1{Zi = t} X 1{2’]' = t}, (5)
t=0
M;; is the inner product of two D-dim vectors. Thad is PD. Similarly, M®) is PD because
MY =21 z® = 1) x 1{z") = ¢}. Ris PD becaus&®;; = Pr{M,; = 1} = E (M;;) and
M;; is the(i, j)-th element of the PD matrikI. Note that the expectation is a linear operatian.

4 Integrating b-Bit Minwise Hashing with (Linear) Learning Algorithms

Linear algorithms such as linear SVM and logistic regrass$iave become very powerful and ex-
tremely popular. Representative software packages ircBMVPe™ [20], Pegasos [31], Bottou’s
SGD SVM [5], and LIBLINEAR [13]. Given a datasétx;, y;)}" ,,x; € R, y; € {-1,1}. The
Lo-regularized linear SVM solves the following optimizatiproblem):

1 S
min EWTW—O—C’ZmaX{l —yinxi, O} , (6)
1=1
and thel,-regularized logistic regression solves a similar problem

: 1 T - —y;wTx;
min o w W—Q—C’;log(l—l—e ) (7
HereC' > 0 is a regularization parameter. Since our purpose is to dstraie the effectiveness of
our proposed scheme usihgit hashing, we simply provide results for a wide rangeCo¥alues
and assume that the best performance is achievable if waicbaass-validations.

In our approach, we apply random permutations on each feature vestoand store the lowest
bits of each hashed value. This way, we obtain a new datasethwan be stored using mereipk
bits. At run-time, we expand each new data point inf8 & k-length vector with exactly 1’s.

For example, suppoge= 3 and the hashed values are origingliy2013, 25964, 20191}, whose bi-
nary digits ar{010111011101101, 110010101101100, 100111011011111}. Consideb = 2. Then
the binary digits are stored 61, 00, 11} (which corresponds tfl, 0, 3} in decimals). At run-time,
we need to expand them into a vector of length = 12, to be{0,0,1,0, 0,0,0,1, 1,0,0,0},
which will be the new feature vector fed to a solver such adINEAR. Clearly, this expansion is
directly inspired by the proof that thebit minwise hashing matrix is PD in Theorem 2.

5 Experimental Results on Webspam Dataset

Our experiment settings closely follow the work in [35]. Vheonducted experiments on three
datasets, of which only thevebspamdataset is public and reasonably high-dimensional=
350000, D = 16609143). Therefore, our experiments focus arebspam Following [35], we
randomly selected0% of samples for testing and used the remairdfgy samples for training.

We chose LIBLINEAR as the workhorse to demonstrate the &¥feeess of our algorithm. All
experiments were conducted on workstations with Xeon(R) Q®5590@3.33GHz) and 48GB



RAM, under Windows 7 System. Thus, in our case, the origimah about 24GB in LIBSVM
format) fit in memory. In applications when the data do notritmiemory, we expect thatbit
hashing will be even more substantially advantageous,usecthe hashed data are relatively very
small. In fact, our experimental results will show that foistdataset, using = 200 andb = 8 can
achieve similar testing accuracies as using the origintl. déhe effective storage for the reduced
dataset (with 350K examples, usihg= 200 andb = 8) would be merely about 70MB.

5.1 Experimental Results on Nonlinear (Kernel) SVM

We implemented a new resemblance kernel function and triedd LIBSVM to train an SVM using
thewebspandataset. The training time well exceeded 24 hours. Forélyatsingb-bit minswise
hashing to estimate the resemblance kernels provides tastibsimprovement. For example, with
k = 150,b = 4, andC = 1, the training time is about 5185 seconds and the testingacgis quite
close to the best results given by LIBLINEAR on the originebspantata.

5.2 Experimental Results on Linear SVM

There is an important tuning parametérTo capture the best performance and ensure repeatability,
we experimented with a wide range@fvalues (from10~3 to 102) with fine spacings irf0.1, 10].

We experimented wittk = 10 to & = 500, andb = 1, 2, 4, 6, 8, 10, and 16. Figure 1 (average)
and Figure 2 (std, standard deviation) provide the testractes. Figure 1 demonstrates that using
b > 8 andk > 200 achieves similar test accuracies as using the original daitece our method
is randomized, we repeated every experiment 50 times. Wartrbpth the mean and std values.
Figure 2 illustrates that the stds are very small, espgoidgth b > 4. In other words, our algorithm
produces stable predictions. For this dataset, the bestrpeances were usually achievedat> 1.
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Figure 1: SVM test accuracy (averaged over 50 repetitions). With > 200 andb > 8. b-bit
hashing achieves very similar accuracies as using thenatigata (dashed, red if color is available).
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Figure 2: SVM test accuracy (std) The standard deviations are computed from 50 repetitions.
Whenb > 8, the standard deviations become extremely small (@.@2%).

10

Compared with the original training time (about 100 seconEgure 3 (upper panels) shows that
our method only needs about 3 seconds (1iéar 1). Note that our reported training time did not
include data loading (about 12 minutes for the original deid 10 seconds for the hashed data).

Compared with the original testing time (about 150 secarfeigure 3 (bottom panels) shows that
our method needs merely about 2 seconds. Note that thegi¢istia includes both the data loading
time, as designed by LIBLINEAR. The efficiency of testing nimeyvery important in practice, for
example, when the classifier is deployed in a user-facingiGgijon (such as search), while the cost
of training or preprocessing may be less critical and caroelacted off-line.
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Figure 3:SVM training time (upper panels) and testing time (bottom panels). The original costs
are plotted using dashed (red, if color is available) curves

5.3 Experimental Results on Logistic Regression

Figure 4 presents the test accuracies and training timeg legjiistic regression. Again, with > 200
andb > 8, b-bit minwise hashing can achieve similar test accuracieseng the original data. The
training time is substantially reduced, from about 100@se€ls to about 30 seconds only.
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Figure 4:Logistic regression test accuracy (upper panels) and traing time (bottom panels)

In summary, it appeaisbit hashing is highly effective in reducing the data sizd apeeding up the
training (and testing), for both SVM and logistic regressid/e notice that when usirig= 16, the
training time can be much larger than using 8. Interestingly, we find thai-bit hashing can be
easily combined withvowpal Wabbit (VW]34] to further reduce the training time whéris large.

6 Random Projections, Count-Min (CM) Sketch, and Vowpal Walbit (VW)

Random projections [1, 24], Count-Min (CM) sketch [11], avimlvpal Wabbit (VW) [32, 34], as
popular hashing algorithms for estimating inner produztffgh-dimensional datasets, are naturally
applicable in large-scale learning. In fact, those metlaod® ot limited to binary data. Interestingly,
the three methods all have essentially the same variancete that in this paper, we use "VW*
particularly for the hashing algorithm in [34], not the irghtial “VW” online learning platform.

6.1 Random Projections

Denote the first two rows of a data matrix by, u, € RP. The task is to estimate the inner
producta = Zi’il uy ;u2,;. The general idea is to multiply the data vectors by a randatrir
{ri;} € RP*F wherer;; is sampled i.i.d. from the following generic distributioritiv[24]

E(ri;) =0, Var(ry) =1, E(r?j) =0, E(r?j) =3, s>1. (8)
Note thatVar(r;) = E(r};) — E*(r};) = s — 1 > 0. This generates twb-dim vectorsy; andus:

D D
V1,57 = E U1,5745, V2.5 = E U275, j = 1,2, veey k (9)
i=1

i=1



The general family of distributions (8) includes the stand@rmal distribution (in this case,= 3)
1 with prob.-

and the “sparse projection” distribution specified'gs= /s x ¢ 0  with prob.1 — %
—1 with prob. -

[24] provided the following unbiased estimaioy,  of « and the general variance formula:

k D
R 1 R
rp,s = > i va g, Elirps) =a =Y uiusi, (10)
g=1 i=1
e D D
Var(arp,s) = % Z uf; Z uj; +a*+ (s = 3) Z uf u (11)
=1 =1 =1

which means = 1 achieves the smallest variance. The only elementary lligioin we know that
satisfies (8) withs = 1 is the two point distribution i —1, 1} with equal probabilities.

[23] proposed an improved estimator for random projectiahishe solution to a cubic equation.
Because it can not be written as an inner product, that efstimoan not be used for linear learning.

6.2 Count-Min (CM) Sketch and Vowpal Wabbit (VW)

Again, in this paper, “VW” always refers to the hashing alton in [34]. VW may be viewed as
a “bias-corrected” version of the Count-Min (CM) sketch]1In the original CM algorithm, the
key step is to independently and uniformly hash elementh@fiata vectors té buckets and the
hashed value is the sum of the elements in the bucket. Thdt)s= j with probability%, where

jeA{1,2,...,k}. By writing I;; = { (1) gtﬁ((elrz/vi:sé , we can write the hashed data as

D D
w1, = E uy i1, Wy j = E ug ;i1 (12)
im1 i=1

The estimaté.,.,, = Z?Zl w1 jwa ; 1S (severely) biased for estimating inner products. Thegioail
paper [11] suggested a “count-min” step for positive dayagénerating multiple independent esti-
matesa..,, and taking the minimum as the final estimate. That step camcesdut can not remove

the bias. Note that the bias can be easily removed by Lt&ﬁlilg(&cm - % Zi’il Uy Zi’;l Ugl)
[34] proposed a creative method for bias-correction, witighsists of pre-multiplying (element-
wise) the original data vectors with a random vector whosgemnare sampled i.i.d. from the two-

point distribution in{ —1, 1} with equal probabilities. Here, we consider the generatidistion (8).
After applying multiplication and hashing an andus, the resultant vectorg andg, are

D D
gl,j = Zulyirﬂij, 92_0' = Z’UJQ_’Z'TZ'IZ'J', j = 1, 2, ceey /{ (13)
=1

=1

whereE(r;) =0, E(r?) =1, E(r}) =0, E(r}) = s. We have the following Lemma.

Theorem 3

k D
Ayw,s = Zgl,jgz,j, E(ayw,s) = Zul,iUQ,i =a, (14)
j=1 =1

D D D D
. 1
Var(aypws) = (s —1) Z uiiu;i + % Z uii Z u%,i +a2-2 Z Uiiug,i O (15)
i=1 i=1 i=1 i=1

Interestingly, the variance (15) says we do need= 1, otherwise the additional terrfs —

1) Zi’il ui ;u3 ; will not vanish even as the sample size— co. In other words, the choice of

random distribution in VW is essentially the only option iewvant to remove the bias by pre-
multiplying the data vectors (element-wise) with a vectbramdom variables. Of course, once we
let s = 1, the variance (15) becomes identical to the variance ofaamngrojections (11).
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7 Comparing b-Bit Minwise Hashing with VW (and Random Projections)

We implemented VW and experimented it on the same webspaaseatat-igure 5 shows thadbit
minwise hashing is substantially more accurate (at the samle sizé) and requires significantly
less training time (to achieve the same accuracy). Bagjdati8-bit minwise hashing wittk = 200
achieves similar test accuracies as VW with: 10* ~ 106 (note that we only stored the non-zeros).
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Figure 5: The dashed (red if color is available) curves regméh-bit minwise hashing results (only
for £ < 500) while solid curves for VW. We display results fér = 0.01, 0.1, 1, 10, 100.
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This empirical finding is not surprising, because the vargawib-bit hashing is usually substantially
smaller than the variance of VW (and random projectionsihértechnical report (arXiv:1106.0967,
which also includes the complete proofs of the theoremseptes in this paper), we show that, at
the same storage cogtbit hashing usually improves VW by 10- to 100-fold, by assugreach
sample of VW needs 32 bits to store. Of course, even if VW otdyes each sample using 16 bits,
an improvement of 5- to 50-fold would still be very substahti

There is one interesting issue here. Unlike random praest{(and minwise hashing), VW is a
sparsity-preservinglgorithm, meaning that in the resultant sample vector ngtle &, the number
of non-zeros will not exceed the number of non-zeros in thigimal vector. In fact, it is easy to see
that the fraction of zeros in the resultant vector would kide@st) (1 — +)° =~ exp (—<), wherec

is the number of non-zeros in the original data vector. s fig@per, we mainly focus on the scenario
in whichc > k, i.e., we useé-bit minwise hashing or VW for the purpose aéita reduction

However, in some cases, we care abowt k, because VW is also an excellent tool fmmpact
indexing In fact, ourb-bit minwise hashing scheme for linear learning may facé sucissue.

8 Combining b-Bit Minwise Hashing with VW

In Figures 3 and 4, whelh= 16, the training time becomes substantially larger than 8. Recall

that in the run-time, we expand thebit minwise hashed data to sparse binary vectors of le2fgth

with exactlyk 1's. Whenb = 16, the vectors are very sparse. On the other hand, once we have
expanded the vectors, the task is merely computing innelyats, for which we can use VW.

Therefore, in the run-time, after we have generated thesegzinary vectors of lengttt &, we hash
them using VW with sample size (to differentiate fromk). How large shouldn be? Theorem 4

may provide an insight. Recall Section 2 provides the estmeenoted byz,, of the resemblance
R, usingb-bit minwise hashing. Now, suppose we first apply VW hashiitg gizem on the binary
vector of length2®k before estimating?, which will introduce some additional randomness. We

denote the new estimator kf?/b,vw. Theorem 4 provides its theoretical variance.
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Figure 6: We apply VW hashing on top of the binary vectors @fgth2°k) generated by-bit
hashing, with sizen = 2k, 2'k, 22k, 23k, 28k, for k = 200 andb = 16. The numbers on the solid
curves (0, 1, 2, 3, 8) are the exponents. The dashed (redoif d@vailable) curves are the results
from only usingb-bit hashing. Whemn = 23F, this method achieves similar test accuracies (left
panels) while substantially reducing the training timglftipanels).



Theorem 4
Var (Rbyw) = Var (Rb) + %m <1 + P

whereVar (Rb) = %ﬁb_(lcgﬁ’g is given by (4) and’, ; is the constant defined in Theorent1.

(16)

P,(1+ F)
)

Compared to the original varianéeur (Rb), the additional term in (16) can be relatively large, if

m is small. Therefore, we should choase> k andm < 2%k. If b = 16, thenm = 28k may be a
good trade-off. Figure 8 provides an empirical study tofyehis intuition.

9 Limitations

While usingb-bit minwise hashing for training linear algorithms is sessful on thewebspam
dataset, it is important to understand the followihgee major limitations of the algorithm:

(A): Our method is designed for binary (0/1) sparse data.: @)r method requires an expensive
preprocessing step for generatikgpermutations of the datd=or most applications, we expect the
preprocessing cost is not a major issue because the prepnogean be conducted off-line (or com-
bined with the data-collection step) and is easily painabidlle. However, even if the speed is not a
concern, the energy consumption might be an issue, eslyemalsidering §-bit) minwise hashing

is mainly used for industry applications. In addition, tegtan new unprocessed data vector (e.g.,
a new document) will be expensivéC): Our method performs only reasonably well in terms of
dimension reduction The processed data need to be mapped into binary vectdtsdnk dimen-
sions, which is usually not small. (Note that the storage sogistbk bits.) For example, for the
webspandataset, using = 8 andk = 200 seems to suffice anzf x 200 = 51200 is quite large,
although it is much smaller than the original dimensiori @imillion. It would be desirable if we
can further reduce the dimension, because the dimensiemdees the storage cost of the model
and (moderately) increases the training time for batchiegralgorithms such as LIBLINEAR.

In hopes of fixing the above limitations, we experimentechvéih implementation using another
hashing technique namézbnditional Random Sampling (CR$21, 22], which is not limited to
binary data and requires only one permutation of the orlgiata (i.e., no expensive preprocessing).
We achieved some limited success. For example, CRS comipamgably to VW in terms of stor-
age (to achieve the same accuracy) onviiebspantataset. However, so far CRS can not compete
with b-bit minwise hashing for linear learning (in terms of traigispeed, storage cost, and model
size). The reason is because even though the estimator oilsGRINner product, the normalization
factors (i.e, the effective sample size of CRS) to ensuréasell estimates substantially differ pair-
wise (which is a significant advantage in other applicafiohs our implementation, we could not
to use fully correct normalization factors, which lead teese bias of the inner product estimates
and less than satisfactory performance of linear learnimgpared ta-bit minwise hashing.

10 Conclusion

As data sizes continue to grow faster than the memory and etatipnal power, statistical learning
tasks in industrial practice are increasingly faced wistining datasets that exceed the resources on
a single server. A number of approaches have been propcesealdtiress this by either scaling out
the training process or partitioning the data, but bothtsmhs can be expensive.

In this paper, we propose a compact representation of spmnsey data sets based biit minwise
hashing, which can be naturally integrated with linearn@ag algorithms such as linear SVM and
logistic regression, leading to dramatic improvementsdimtng time and/or resource requirements.
We also comparg-bit minwise hashing with the Count-Min (CM) sketch and ValdVabbit (VW)
algorithms, which, according to our analysis, all have €asially) the same variances as random
projections [24]. Our theoretical and empirical compansdlustrate thab-bit minwise hashing is
significantly more accurate (at the same storage) for bidatg. There are various limitations (e.g.,
expensive preprocessing) in our proposed method, leavitpdearoom for future research.
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