NIPS Proceedingsβ

Data Skeletonization via Reeb Graphs

Part of: Advances in Neural Information Processing Systems 24 (NIPS 2011)

[PDF] [BibTeX]

Authors

Abstract

Recovering hidden structure from complex and noisy non-linear data is one of the most fundamental problems in machine learning and statistical inference. While such data is often high-dimensional, it is of interest to approximate it with a low-dimensional or even one-dimensional space, since many important aspects of data are often intrinsically low-dimensional. Furthermore, there are many scenarios where the underlying structure is graph-like, e.g, river/road networks or various trajectories. In this paper, we develop a framework to extract, as well as to simplify, a one-dimensional "skeleton" from unorganized data using the Reeb graph. Our algorithm is very simple, does not require complex optimizations and can be easily applied to unorganized high-dimensional data such as point clouds or proximity graphs. It can also represent arbitrary graph structures in the data. We also give theoretical results to justify our method. We provide a number of experiments to demonstrate the effectiveness and generality of our algorithm, including comparisons to existing methods, such as principal curves. We believe that the simplicity and practicality of our algorithm will help to promote skeleton graphs as a data analysis tool for a broad range of applications.