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Abstract
Unlike existing nonparametric Bayesian models, which rely solely on specially
conceived priors to incorporate domain knowledge for discovering improved la-
tent representations, we study nonparametric Bayesian inference with regulariza-
tion on the desired posterior distributions. While priors can indirectly affect pos-
terior distributions through Bayes’ theorem, imposing posterior regularization is
arguably more direct and in some cases can be much easier. We particularly fo-
cus on developing infinite latent support vector machines (iLSVM) and multi-task
infinite latent support vector machines (MT-iLSVM), which explore the large-
margin idea in combination with a nonparametric Bayesian model for discovering
predictive latent features for classification and multi-task learning, respectively.
We present efficient inference methods and report empirical studies on several
benchmark datasets. Our results appear to demonstrate the merits inherited from
both large-margin learning and Bayesian nonparametrics.

1 Introduction
Nonparametric Bayesian latent variable models have recently gained remarkable popularity in statis-
tics and machine learning, partly owning to their desirable “nonparametric” nature which allows
practitioners to “sidestep” the difficult model selection problem, e.g., figuring out the unknown num-
ber of components (or classes) in a mixture model [2] or determining the unknown dimensionality
of latent features [12], by using an appropriate prior distribution with a large support. Among the
most commonly used priors are Gaussian process (GP) [24], Dirichlet process (DP) [2] and Indian
buffet process (IBP) [12].

However, standard nonparametric Bayesian models are limited in that they usually make very strict
and unrealistic assumptions on data, such as that observations being homogeneous or exchangeable.
A number of recent developments in Bayesian nonparametrics have attempted to alleviate such limi-
tations. For example, to handle heterogenous observations, predictor-dependent processes [20] have
been proposed; and to relax the exchangeability assumption, various correlation structures, such
as hierarchical structures [26], temporal or spatial dependencies [5], and stochastic ordering de-
pendencies [13, 10], have been introduced. However, all these methods rely solely on crafting a
nonparametric Bayesian prior encoding some special structure, which can indirectly influence the
posterior distribution of interest via trading-off with likelihood models. Since it is the posterior
distributions, which capture the latent structures to be learned, that are of our ultimate interest, an
arguably more direct way to learn a desirable latent-variable model is to impose posterior regular-
ization (i.e., regularization on posterior distributions), as we will explore in this paper. Another
reason for using posterior regularization is that in some cases it is more natural and easier to incor-
porate domain knowledge, such as the large-margin [15, 31] or manifold constraints [14], directly
on posterior distributions rather than through priors, as shown in this paper.

Posterior regularization, usually through imposing constraints on the posterior distributions of latent
variables or via some information projection, has been widely studied in learning a finite log-linear
model from partially observed data, including generalized expectation [21], posterior regulariza-
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tion [11], and alternating projection [6], all of which are doing maximum likelihood estimation
(MLE) to learn a single set of model parameters by optimizing an objective. Recent attempts to-
ward learning a posterior distribution of model parameters include the “learning from measure-
ments” [19], maximum entropy discrimination [15] and MedLDA [31]. But again, all these meth-
ods are limited to finite parametric models. To our knowledge, very few attempts have been made to
impose posterior regularization on nonparametric Bayesian latent variable models. One exception
is our recent work of infinite SVM (iSVM) [32], a DP mixture of large-margin classifiers. iSVM is
a latent class model that assigns each data example to a single mixture component for classification
and the unknown number of mixture components is automatically resolved from data.

In this paper, we present a general formulation of performing nonparametric Bayesian inference
subject to appropriate posterior constraints. In particular, we concentrate on developing the infi-
nite latent support vector machines (iLSVM) and multi-task infinite latent support vector machines
(MT-iLSVM), which explore the discriminative large-margin idea to learn infinite latent feature
models for classification and multi-task learning [3, 4], respectively. As such, our methods as well
as [32] represent an attempt to push forward the interface between Bayesian nonparametrics and
large margin learning, which have complementary advantages but have been largely treated as two
separate subfields in the machine learning community. Technically, although it is intuitively natu-
ral for MLE-based methods to include a regularization term on the posterior distributions of latent
variables, this is not straightforward for Bayesian inference because we do not have an optimization
objective to be regularized. We base our work on the interpretation of the Bayes’ theorem by Zell-
ner [29], namely, the Bayes’ theorem can be reformulated as a minimization problem. Under this
optimization framework, we incorporate posterior constraints to do regularized Bayesian inference,
with a penalty term that measures the violation of the constraints. Both iLSVM and MT-iLSVM are
special cases that explore the large-margin principle to consider supervising information for learn-
ing predictive latent features, which are good for classification or multi-task learning. We use the
nonparametric IBP prior to allow the models to have an unbounded number of latent features. The
regularized inference problem can be efficiently solved with an iterative procedure, which leverages
existing high-performance convex optimization techniques.

Related Work: As stated above, both iLSVM and MT-iLSVM generalize the ideas of iSVM to
infinite latent feature models. For multi-task learning, nonparametric Bayesian models have been
developed in [28, 23] for learning features shared by multiple tasks. But these methods are based
on standard Bayesian inference, without the ability to consider posterior regularization, such as the
large-margin constraints or the manifold constraints [14]. Finally, MT-iLSVM is a nonparametric
Bayesian generalization of the popular multi-task learning methods [1, 16], as explained shortly.

2 Regularized Bayesian Inference with Posterior Constraints
In this section, we present the general framework of regularized Bayesian inference with posterior
constraints. We begin with a brief review of the basic results due to Zellner [29].

2.1 Bayesian Inference as a Learning Model
Let M be a model space, containing any variables whose posterior distributions we are trying to
infer. Bayesian inference starts with a prior distribution π(M) and a likelihood function p(x|M)
indexed by the model M ∈ M. Then, by the Bayes’ theorem, the posterior distribution is

p(M|x1, · · · ,xN ) =
π(M)

∏N
n=1 p(xn|M)

p(x1, · · · ,xN )
, (1)

where p(x1, · · · ,xN ) is the marginal likelihood or evidence of observed data. Zellner [29] first
showed that the posterior distribution due to the Bayes’ theorem is the solution of the problem

min
p(M)

KL(p(M)∥π(M)) −
N∑

n=1

∫
log p(xn|M)p(M)dM (2)

s.t. : p(M) ∈ Pprob,

where KL(p(M)∥π(M)) is the Kullback-Leibler (KL) divergence, and Pprob is the space of valid
probability distributions with an appropriate dimension.

2.2 Regularized Bayesian Inference with Posterior Constraints
As commented by E.T. Jaynes [29], “this fresh interpretation of Bayes’ theorem could make the
use of Bayesian methods more attractive and widespread, and stimulate new developments in
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the general theory of inference”. Below, we study how to extend the basic results to incorporate
posterior constraints in Bayesian inference. In the standard Bayesian inference, the constraints (i.e.,
p(M) ∈ Pprob) do not have auxiliary free parameters. In general, regularized Bayesian inference
solves the constrained optimization problem

min
p(M),ξ

KL(p(M)∥π(M)) −
N∑

n=1

∫
log p(xn|M)p(M)dM + U(ξ) (3)

s.t. : p(M) ∈ Ppost(ξ),

where Ppost(ξ) is a subspace of distributions that satisfy a set of constraints. The auxiliary parameters
ξ are usually nonnegative and interpreted as slack variables. U(ξ) is a convex function, which
usually corresponds to a surrogate loss (e.g., hinge loss) of a prediction rule, as we shall see.

We can use an iterative procedure to do the regularized Bayesian inference based on convex op-
timization techniques. The general recipe is that we use the Lagrangian method by introducing
Lagrangian multipliers ω. Then, we iteratively solve for p(M) with ω and ξ fixed; and solve
for ω and ξ with p(M) given. For the first step, we can use sampling or variational methods [9]
to do approximate inference; and under certain conditions, such as using the constraints based on
posterior expectation [21], the second step can be efficiently done using high-performance convex
optimization techniques, as we shall see.

3 Infinite Latent Support Vector Machines
In this section, we concretize the ideas of regularized Bayesian inference by particularly focusing on
developing large-margin classifiers with an unbounded dimension of latent features, which can be
used as a representation of examples for the single-task classification or as a common representation
that captures relationships among multiple tasks for multi-task learning.

We first present the single-task classification model. The basic setup is that we project each data
example x ∈ X ⊂ RD to a latent feature vector z. Here, we consider binary features1. Given a
set of N data examples, let Z be the matrix, of which each row is a binary vector zn associated
with data sample n. Instead of pre-specifying a fixed dimension of z, we resort to the nonparametric
Bayesian methods and let z have an infinite number of dimensions. To make the expected number
of active latent features finite, we put the well-studied IBP prior on the binary feature matrix Z.

3.1 Indian Buffet Process

Indian buffet process (IBP) was proposed in [12] and has been successfully applied in various
fields, such as link prediction [22] and multi-task learning [23]. We focus on its stick-breaking
construction [25], which is good for developing efficient inference methods. Let πk ∈ (0, 1) be a
parameter associated with column k of the binary matrix Z. Given πk, each znk in column k is
sampled independently from Bernoulli(πk). The parameters π are generated by a stick-breaking
process

π1 = ν1, and πk = νkπk−1 =
k∏

i=1

νi, (4)

where νi ∼ Beta(α, 1). This process results in a decreasing sequence of probabilities πk. Specifi-
cally, given a finite dataset, the probability of seeing feature k decreases exponentially with k.

3.2 Infinite Latent Support Vector Machines

We consider the multi-way classification, where each training data is provided with a categorical
label y, where y ∈ Y def

= {1, · · · , L}. For binary classification and regression, similar procedure
can be applied to impose large-margin constraints on posterior distributions. Suppose that the latent
features z are given, then we can define the latent discriminant function as

f(y,x, z;η)
def
= η⊤g(y,x, z), (5)

where g(y,x, z) is a vector stacking of L subvectors2 of which the yth is z⊤ and all the others are
zero. Since we are doing Bayesian inference, we need to maintain the entire distribution profile of

1Real-valued features can be easily considered as in [12].
2We can consider the input features x or its certain statistics in combination with the latent features z to

define a classifier boundary, by simply concatenating them in the subvectors.
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the latent features Z. However, in order to make a prediction on the observed data x, we need to get
rid of the uncertainty of Z. Here, we define the effective discriminant function as an expectation3

(i.e., a weighted average considering all possible values of Z) of the latent discriminant function.
To make the model fully Bayesian, we also treat η as random and aim to infer the posterior distri-
bution p(Z,η) from given data. More formally, the effective discriminant function f : X ×Y 7→ R is

f(y,x; p(Z,η))
def
= Ep(Z,η)[f(y,x, z;η)] = Ep(Z,η)[η

⊤g(y,x, z)]. (6)

Note that although the number of latent features is allowed to be infinite, with probability one, the
number of non-zero features is finite when only a finite number of data are observed, under the IBP
prior. Moreover, to make it computationally feasible, we usually set a finite upper bound K to the
number of possible features, where K is sufficiently large and known as the truncation level (See
Sec 3.4 and Appendix A.2 for details). As shown in [9], the ℓ1-distance truncation error of marginal
distributions decreases exponentially as K increases.

With the above definitions, we define the Ppost(ξ) in problem (3) using large-margin constraints as

Pc
post(ξ)

def
=

{
p(Z,η)

∀n ∈ Itr : f(yn,xn; p(Z,η))−f(y,xn; p(Z,η))≥ℓ(y, yn)−ξn, ∀y
ξn ≥ 0

}
(7)

and define the penalty function as U c(ξ)
def
= C

∑
n∈Itr

ξp
n, where p ≥ 1. If p is 1, minimizing

U c(ξ) is equivalent to minimizing the hinge-loss (or ℓ1-loss) Rc
h of the prediction rule (9), where

Rc
h = C

∑
n∈Itr

maxy(f(y,xn; p(Z,η)) + ℓ(y, yn) − f(yn,xn; p(Z,η))); if p is 2, the surrogate
loss is the ℓ2-loss. For clarity, we consider the hinge loss. The non-negative cost function ℓ(y, yn)
(e.g., 0/1-cost) measures the cost of predicting xn to be y when its true label is yn. Itr is the index
set of training data.

In order to robustly estimate the latent matrix Z, we need a reasonable amount of data. Therefore,
we also relate Z to the observed data x by defining a likelihood model to provide as much data as
possible. Here, we define the linear-Gaussian likelihood model for real-valued data

p(xn|zn,W, σ2
n0) = N (xn|Wz⊤

n , σ
2
n0I), (8)

where W is a random loading matrix and I is an identity matrix with appropriate dimensions. We
assume W follows an independent Gaussian prior, i.e., π(W) =

∏
d N (wd|0, σ2

0I). Fig. 1 (a)
shows the graphical structure of iLSVM. The hyperparameters σ2

0 and σ2
n0 can be set a priori or

estimated from observed data (See Appendix A.2 for details).

Testing: to make prediction on test examples, we put both training and test data together to do the
regularized Bayesian inference. For training data, we impose the above large-margin constraints
because of the awareness of their true labels, while for test data, we do the inference without the
large-margin constraints since we do not know their true labels. After inference, we make the
prediction via the rule

y∗ def
= arg max

y
f(y,x; p(Z,η)). (9)

The ability to generalize to test data relies on the fact that all the data examples share η and the
IBP prior. We can also cast the problem as a transductive inference problem by imposing additional
constraints on test data [17]. However, the resulting problem will be generally harder to solve.

3.3 Multi-Task Infinite Latent Support Vector Machines

Different from classification, which is typically formulated as a single learning task, multi-task
learning aims to improve a set of related tasks through sharing statistical strength between these
tasks, which are performed jointly. Many different approaches have been developed for multi-task
learning (See [16] for a review). In particular, learning a common latent representation shared by all
the related tasks has proven to be an effective way to capture task relationships [1, 3, 23]. Below, we
present the multi-task infinite latent SVM (MT-iLSVM) for learning a common binary projection
matrix Z to capture the relationships among multiple tasks. Similar as in iLSVM, we also put the
IBP prior on Z to allow it to have an unbounded number of columns.

3Although other choices such as taking the mode are possible, our choice could lead to a computationally
easy problem because expectation is a linear functional of the distribution under which the expectation is taken.
Moreover, expectation can be more robust than taking the mode [18], and it has been used in [31, 32].
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Figure 1: Graphical structures of (a) infinite la-
tent SVM (iLSVM); and (b) multi-task infinite
latent SVM (MT-iLSVM). For MT-iLSVM, the
dashed nodes (i.e., ςm) are included to illustrate
the task relatedness. We have omitted the priors
on W and η for notation brevity.

Suppose we have M related tasks. Let Dm = {(xmn, ymn)}n∈Im
tr

be the training data for task
m. We consider binary classification tasks, where Ym = {+1,−1}. Extension to multi-way
classification or regression tasks can be easily done. If the latent matrix Z is given, we define the
latent discriminant function for task m as

fm(x,Z;ηm)
def
= (Zηm)⊤x = η⊤

m(Z⊤x). (10)

This definition provides two views of how the M tasks get related. If we let ςm = Zηm, then ςm are
the actual parameters of task m and all ςm in different tasks are coupled by sharing the same latent
matrix Z. Another view is that each task m has its own parameters ηm, but all the tasks share the
same latent features Z⊤x, which is a projection of the input features x and Z is the latent projection
matrix. As such, our method can be viewed as a nonparametric Bayesian treatment of alternating
structure optimization (ASO) [1], which learns a single projection matrix with a pre-specified latent
dimension. Moreover, different from [16], which learns a binary vector with known dimensionality
to select features or kernels on x, we learn an unbounded projection matrix Z using nonparametric
Bayesian techniques.

As in iLSVM, we take the fully Bayeisan treatment (i.e., ηm are also random variables) and define
the effective discriminant function for task m as the expectation

fm(x; p(Z,η))
def
= Ep(Z,η)[fm(x,Z;ηm)] = Ep(Z,η)[Zηm]⊤x. (11)

Then, the prediction rule for task m is naturally y∗
m

def
= signfm(x). Similarly, we do regularized

Bayesian inference by imposing the following constraints and definingUMT (ξ)
def
= C

∑
m,n∈Im

tr
ξmn

PMT
post(ξ)

def
=

{
p(Z,η)

∀m, ∀n ∈ Im
tr : ymnEp(Z,η)[Zηm]⊤xmn ≥ 1 − ξmn

ξmn ≥ 0

}
. (12)

Similar as in iLSVM, minimizing UMT (ξ) is equivalent to minimizing the hinge-loss RMT
h of the

multiple binary prediction rules, where RMT
h = C

∑
m,n∈Im

tr
max(0, 1−ymnEp(Z,η)[Zηm]⊤xmn).

Finally, to obtain more data to estimate the latent Z, we also relate it to observed data by defining
the likelihood model

p(xmn|wmn,Z, λ
2
mn) = N (xmn|Zwmn, λ

2
mnI), (13)

where wmn is a vector. We assume W has an independent prior π(W) =
∏

mn N (wmn|0, σ2
m0I).

Fig. 1 (b) illustrates the graphical structure of MT-iLSVM. For testing, we use the same strategy as
in iLSVM to do Bayesian inference on both training and test data. The difference is that training
data are subject to large-margin constraints, while test data are not. Similarly, the hyper-parameters
σ2

m0 and λ2
mn can be set a priori or estimated from data (See Appendix A.1 for details).

3.4 Inference with Truncated Mean-Field Constraints

We briefly discuss how to do regularized Bayesian inference (3) with the large-margin constraints
for MT-iLSVM. For iLSVM, similar procedure applies. To make the problem easier to solve, we
use the stick-breaking representation of IBP, which includes the auxiliary variables ν, and infer the
posterior p(ν,W,Z,η). Furthermore, we impose the truncated mean-field constraint that

p(ν,W,Z,η) = p(η)
K∏

k=1

(
p(νk|γk)

D∏

d=1

p(zdk|ψdk)
) ∏

mn

p(wmn|Φmn, σ
2
mnI), (14)

where K is the truncation level; p(wmn|Φmn, σ
2
mnI) = N (wmn|Φmn, σ

2
mnI); p(zdk|ψdk) =

Bernoulli(ψdk); and p(νk|γk) = Beta(γk1, γk2). We first turn the constrained problem to a prob-
lem of finding a stationary point using Lagrangian methods by introducing Lagrange multipliers ω,
one for each large-margin constraint as defined in Eq. (12), and u for the nonnegativity constraints
of ξ. Let L(p, ξ,ω,u) be the Lagrangian functional. The inference procedure iteratively solves the
following two steps (We defer the details to Appendix A.1):
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