Lower Bounds for Passive and Active Learning

Maxim Raginsky*
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Alexander Rakhlin
Department of Statistics
University of Pennsylvania

Abstract

We develop unified information-theoretic machinery for deriving lower bounds for passive and active learning schemes. Our bounds involve the so-called Alexander’s capacity function. The supremum of this function has been recently rediscovered by Hanneke in the context of active learning under the name of “disagreement coefficient.” For passive learning, our lower bounds match the upper bounds of Giné and Koltchinskii up to constants and generalize analogous results of Massart and Nédélec. For active learning, we provide first known lower bounds based on the capacity function rather than the disagreement coefficient.

1 Introduction

Not all Vapnik-Chervonenkis classes are created equal. This was observed by Massart and Nédélec [24], who showed that, when it comes to binary classification rates on a sample of size n under a margin condition, some classes admit rates of the order $1/n$ while others only $(\log n)/n$. The latter classes were called “rich” in [24]. As noted by Giné and Koltchinskii [15], the fine complexity notion that defines this “richness” is in fact embodied in Alexander’s capacity function. Somewhat surprisingly, the supremum of this function (called the disagreement coefficient by Hanneke [19]) plays a key role in risk bounds for active learning. The contribution of this paper is twofold. First, we prove lower bounds for passive learning based on Alexander’s capacity function, matching the upper bounds of [15] up to constants. Second, we prove lower bounds for the number of label requests in active learning in terms of the capacity function. Our proof techniques are information-theoretic in nature and provide a unified tool to study active and passive learning within the same framework.

Active and passive learning. Let $(\mathcal{X},\mathcal{A})$ be an arbitrary measurable space. Let (X,Y) be a random variable taking values in $\mathcal{X} \times \{0,1\}$ according to an unknown distribution $P = \Pi \otimes P_{Y|X}$, where Π denotes the marginal distribution of X. Here, X is an instance (or a feature, a predictor variable) and Y is a binary response (or a label). Classical results in statistical learning assume availability of an i.i.d. sample $\{(X_i,Y_i)\}_{i=1}^n$ from P. In this framework, the learner is passive and has no control on how this sample is chosen. The classical setting is well studied, and the following question has recently received attention: do we gain anything if data are obtained sequentially, and the learner is allowed to modify the design distribution Π of the predictor variable before receiving the next pair (X_i,Y_i)? That is, can the learner actively use the information obtained so far to facilitate faster learning?

Two paradigms often appear in the literature: (i) the design distribution is a Dirac delta function at some x_0 that depends on (x_{i-1},y_{i-1}), or (ii) the design distribution is a restriction of the original distribution to some measurable set. There is rich literature on both approaches, and we only mention a few results here. The paradigm (i) is closely related to learning with membership queries [21], generalized binary search [25], and coding with noiseless feedback [6]. The goal is to actively choose the next x_i so that the observed $Y_i \sim P_{Y|X=x_i}$ is sufficiently “informative” for the classification task. In this paradigm, the sample no longer provides information about the distribution of x_i given y_i.

To be precise, the capacity function depends on the underlying probability distribution.
equality if and only if
\[f(x) \triangleq \text{define the} \ h(x) \]
Clearly, it is well known that the risk is globally minimized by the Bayes classifier \(f^* \) which minimizes the expected loss \(R(f) \). Under Massart’s noise condition, Koltchinskii showed (see [23]) that the disagreement coefficient is bounded above by
\[\epsilon \]
recently, Koltchinskii [23] made an important connection between Hanneke’s disagreement coefficient and Alexander’s capacity function. Under Massart’s noise condition, Koltchinskii showed (see [23, Corollary 1]) that, for achieving an excess error of \(\epsilon \) with confidence \(1 - \delta \), the number of queries issued by his active learning algorithm is bounded above by
\[C \frac{\tau_0 \log(1/\epsilon)}{h^2} \left[d \log \tau_0 + \log(1/\delta) + \log \log(1/\epsilon) + \log \log(1/h) \right] \]
where \(\tau_0 = \sup_{\epsilon \in (0,1]} \tau(\epsilon) \) is Hanneke’s disagreement coefficient. Similar bounds based on the disagreement coefficient have appeared in [19, 20, 11]. The second contribution of this paper is a lower bound on the expected number of queries based on Alexander’s capacity \(\tau(\epsilon) \).
Comparison to known lower bounds. For passive learning, Massart and Nédélec [24] proved two lower bounds which, in fact, correspond to $\tau(\varepsilon) = 1/\varepsilon$ and $\tau(\varepsilon) = \tau_0$, the two endpoints on the complexity scale for the capacity function. Without the capacity function at hand, the authors emphasize that “rich” VC classes yield a larger lower bound. Our Theorem 1 below gives a unified construction for all possible complexities $\tau(\varepsilon)$.

In the PAC framework, the lower bound $\Omega(d/\varepsilon + (1/\varepsilon)\log(1/\delta))$ goes back to [12]. It follows from our results that in the noisy version of the problem ($h \neq 1$), the lower bound is in fact $\Omega((d/\varepsilon)\log(1/\varepsilon) + (1/\varepsilon)\log(1/\delta))$ for classes with $\tau(\varepsilon) = \Omega(1/\varepsilon)$.

For active learning, Castro and Nowak [7] derived lower bounds, but without the disagreement coefficient and under a Tsypak type noise condition. This setting is out of the scope of this paper.

For passive learning, Massart and Nédélec [24] proved a lower bound on the number of label requests specifically for the A^2 algorithm in terms of the disagreement coefficient. In contrast, lower bounds of Theorem 2 are valid for any algorithm and are in terms of Alexander’s capacity function. Finally, a result by Kääriäinen [22] (strengthened by [5]) gives a lower bound of $\Omega(\nu^2/\varepsilon^2)$ where $\nu = \inf_{f \in F} E_{\nu}(f)$. A closer look at the construction of the lower bound reveals that it is achieved by considering a specific margin $h = \varepsilon/\nu$. Such an analysis is somewhat unsatisfying, as we would like to keep h as a free parameter, not necessarily coupled with the desired accuracy ε. This point of view is put forth by Massart and Nédélec [24, p. 2329], who argue for a non-asymptotic analysis where all the parameters of the problem are made explicit. We also feel that this gives a better understanding of the problem.

2 Setup and main results

We suppose that the instance space \mathcal{X} is a countably infinite set. Also, $\log(\cdot) \equiv \log_2(\cdot)$ throughout.

Definition 1. Given a VC function class \mathcal{F} and a margin parameter $h \in [0, 1]$, let $\mathcal{C}(\mathcal{F}, h)$ denote the class of all conditional probability distributions $P_{Y|X}$ of $Y \in \{0, 1\}$ given $X \in \mathcal{X}$, such that: (a) the Bayes classifier $f^* \in \mathcal{F}$, and (b) the corresponding regression function satisfies the Massart condition with margin $h > 0$.

Let $\mathcal{P}(\mathcal{X})$ denote the space of all probability measures on \mathcal{X}. We now introduce Alexander’s capacity function (1) into the picture. Whenever we need to specify explicitly the dependence of $\tau(\varepsilon)$ on f^* and Π, we will write $\tau(\varepsilon; f^*, \Pi)$. We also denote by \mathcal{T} the set of all admissible capacity functions $\tau : [0, 1] \to \mathbb{R}^+$, i.e., $\tau \in \mathcal{T}$ if and only if there exist some $f^* \in \mathcal{F}$ and $\Pi \in \mathcal{P}(\mathcal{X})$, such that $\tau(\varepsilon) = \tau(\varepsilon; f^*, \Pi)$ for all $\varepsilon \in (0, 1]$. Without loss of generality, we assume $\tau(\varepsilon) \geq 2$.

Definition 2. Given some $\Pi \in \mathcal{P}(\mathcal{X})$ and a pair (\mathcal{F}, h) as in Def. 1, we let $\mathfrak{P}(\Pi, \mathcal{F}, h)$ denote the set of all joint distributions of $(X, Y) \in \mathcal{X} \times \{0, 1\}$ of the form $\Pi \otimes P_{Y|X}$, such that $P_{Y|X} \in \mathcal{C}(\mathcal{F}, h)$. Moreover, given an admissible function $\tau \in \mathcal{T}$ and some $\varepsilon \in (0, 1]$, we let $\mathfrak{P}(\Pi, \mathcal{F}, h, \tau, \varepsilon)$ denote the subset of $\mathfrak{P}(\Pi, \mathcal{F}, h)$, such that $\tau(\varepsilon; f^*, \Pi) = \tau(\varepsilon)$.

Finally, we specify the type of learning schemes we will be dealing with.

Definition 3. An n-step learning scheme \mathcal{S} consists of the following objects: n conditional probability distributions $\Pi^{(t)}_{X_t|X_{t-1}, Y_{t-1}}$, $t = 1, \ldots, n$, and a mapping $\psi : \mathcal{X}^n \times \{0, 1\}^n \to \mathcal{F}$.

This definition covers the passive case if we let

$\Pi^{(t)}_{X_t|X_{t-1}, Y_{t-1}}(x^{t-1}, y^{t-1}) = \Pi(\cdot), \quad \forall (x^{t-1}, y^{t-1}) \in \mathcal{X}^{t-1} \times \{0, 1\}^{t-1}$

as well as the active case, in which $\Pi^{(t)}_{X_t|X_{t-1}, Y_{t-1}}(\cdot|x^{t-1}, Y^{t-1})$ is the user-controlled design distribution for the feature at time t given all currently available information. The learning process takes place sequentially as follows: At each time step $t = 1, \ldots, n$, a random feature X_t is drawn according to $\Pi^{(t)}_{X_t|X_{t-1}, Y_{t-1}}(\cdot|x^{t-1}, Y^{t-1})$, and then a label Y_t is drawn given X_t. After the n samples $\{(X_t, Y_t)\}_{t=1}^n$ are collected, the learner computes the candidate classifier $\hat{f}_n = \psi(X^n, Y^n)$.

To quantify the performance of such a scheme, we need the concept of an induced measure, which generalizes the set-up of [14]. Specifically, given some $P = \Pi \otimes P_{Y|X} \in \mathfrak{P}(\Pi, \mathcal{F}, h)$, define the
following probability measure on $X^n \times \{0, 1\}^n$:

$$
P_S(x^n, y^n) = \prod_{t=1}^{n} P_{Y|X}(y_t|x_t)\Pi^{(t)}_{X_t|x_{t-1}, Y_{t-1}}(x_t|x^{t-1}, y^{t-1}).$$

Definition 4. Let Q be a subset of $\mathbb{P}(\Pi, \mathcal{F}, h)$. Given an accuracy parameter $\varepsilon \in (0, 1)$ and a confidence parameter $\delta \in (0, 1)$, an n-step learning scheme S is said to (ε, δ)-learn Q if

$$
\sup_{P \in Q} \mathbb{P}^S \left(E_P(\hat{f}_n) \geq \varepsilon h \right) \leq \delta.
$$

(4)

Remark 1. Leaving the precision as εh makes the exposition a bit cleaner in light of the fact that, under Massart’s noise condition with margin h, $E_P(f) \geq h \|f - f_P^*\|_{L_1(\Pi)} = h\Pi(f(X) \neq f_P^*(X))$ (cf. Massart and Nédélec [24, p. 2352]).

With these preliminaries out of the way, we can state the main results of this paper:

Theorem 1 (Lower bounds for passive learning). Given any $\tau \in \mathcal{T}$, any sufficiently large $d \in \mathbb{N}$ and any $\varepsilon \in (0, 1]$, there exist a probability measure $\Pi \in \mathbb{P}(X)$ and a VC class \mathcal{F} with VC-dim(\mathcal{F}) = d with the following properties:

1) Fix any $K > 1$ and $\delta \in (0, 1/2)$. If there exists an n-step passive learning scheme that $(\varepsilon/2, \delta)$-learns $\mathbb{P}(\Pi, \mathcal{F}, h, \tau, \varepsilon)$ for some $h \in (0, 1 - K^{-1}]$, then

$$
n = \Omega \left(\frac{(1 - \delta)d \log \tau(\varepsilon)}{K \varepsilon h^2} + \frac{\log \frac{1}{\delta}}{K \varepsilon h^2} \right).
$$

(5)

2) If there exists an n-step passive learning scheme that $(\varepsilon/2, \delta)$-learns $\mathbb{P}(\Pi, \mathcal{F}, 1, \tau, \varepsilon)$, then

$$
n = \Omega \left(\frac{(1 - \delta)d}{\varepsilon} \right).
$$

(6)

Theorem 2 (Lower bounds for active learning). Given any $\tau \in \mathcal{T}$, any sufficiently large $d \in \mathbb{N}$ and any $\varepsilon \in (0, 1]$, there exist a probability measure $\Pi \in \mathbb{P}(X)$ and a VC class \mathcal{F} with VC-dim(\mathcal{F}) = d with the following property: Fix any $K > 1$ and any $\delta \in (0, 1/2)$. If there exists an n-step active learning scheme that $(\varepsilon/2, \delta)$-learns $\mathbb{P}(\Pi, \mathcal{F}, h, \tau, \varepsilon)$ for some $h \in (0, 1 - K^{-1}]$, then

$$
n = \Omega \left(\frac{(1 - \delta)d \log \tau(\varepsilon)}{K \varepsilon h^2} + \frac{\tau(\varepsilon) \log \frac{1}{\delta}}{K \varepsilon h^2} \right).
$$

(7)

Remark 2. The lower bound in (6) is well-known and goes back to [12]. We mention it because it naturally arises from our construction. In fact, there is a smooth transition between (5) and (6), with the extra $\log \tau(\varepsilon)$ factor disappearing as h approaches 1. As for the active learning lower bound, we conjecture that $d \log \tau(\varepsilon)$ is, in fact, optimal, and the extra factor of τ_0 in $d\tau_0 \log \tau_0 \log(1/\varepsilon)$ in (3) arises from the use of a passive learning algorithm as a black box.

The remainder of the paper is organized as follows: Section 3 describes the required information-theoretic tools, which are then used in Section 4 to prove Theorems 1 and 2. The proofs of a number of technical lemmas can be found in the Supplementary Material.

3 Information-theoretic framework

Let P and Q be two probability distributions on a common measurable space \mathcal{W}. Given a convex function $\phi : [0, \infty) \rightarrow \mathbb{R}$ such that $\phi(1) = 0$, the ϕ-divergence\(^2\) between P and Q [3, 10] is given by

$$
D_\phi(P\|Q) \triangleq \int_{\mathcal{W}} \frac{dQ}{d\mu} \phi \left(\frac{dP}{d\mu} \right) d\mu,
$$

(8)

where μ is an arbitrary σ-finite measure that dominates both P and Q.\(^3\) For the special case of $\mathcal{W} = \{0, 1\}$, when P and Q are the distributions of a Bernoulli(p) and a Bernoulli(q) random

\(^2\)We deviate from the standard term “f-divergence” since f is already reserved for a generic classifier.

\(^3\)For instance, one can always take $\mu = P + Q$. It is easy to show that the value of $D_\phi(P\|Q)$ in (8) does not depend on the choice of the dominating measure.
variable, we will denote their ϕ-divergence by
\[
d_\phi(p||q) = q \cdot \phi\left(\frac{p}{q}\right) + (1 - q) \cdot \phi\left(\frac{1 - p}{1 - q}\right) .
\]
(9)

Two particular choices of ϕ are of interest: $\phi(u) = u \log u$, which gives the ordinary Kullback–Leibler (KL) divergence $D(P||Q)$, and $\phi(u) = -\log u$, which gives the reverse KL divergence $D(Q||P)$, which we will denote by $D_{\text{re}}(P||Q)$. We will write $d(\cdot||\cdot)$ for the binary KL divergence.

Our approach makes fundamental use of the

data processing inequality

that holds for any ϕ-divergence [10]: if P and Q are two possible probability distributions for a random variable $W \sim W$ and if $P_{Z\mid W}$ is a conditional probability distribution of some other random variable Z given W, then
\[
D_{\phi}(P_{Z\mid W}||Q_{Z}) \leq D_{\phi}(P||Q),
\]
(10)

where P_Z (resp., Q_Z) is the marginal distribution of Z when W has distribution P (resp., Q).

Consider now an arbitrary n-step learning scheme S. Let us fix a finite set $\{f_1, \ldots, f_N\} \subset F$ and assume that to each $m \in [N]$ we can associate a probability measure $P_m = \Pi \otimes P_{mlX} \in \mathcal{P}(\Pi, F, h)$ with the Bayes classifier $f_{\hat{p}_m} = f_m$. For each $m \in [N]$, let us define the induced measure
\[
p_{S,m}(x^n, y^n) \triangleq \prod_{t=1}^n P_{Y\mid X}^m(y_t|x_t)\Pi_x^{(t)}|X_t^{t-1}, Y_{t-1}(x_t|Y_{t-1}, y_{t-1}).
\]
(11)

Moreover, given any probability distribution π over $[N]$, let $p_{S,m}(m, x^n, y^n) \triangleq \pi(m)p_{S,m}(x^n, y^n)$. In other words, $p_{S,m}$ is the joint distribution of $(M, X^n, Y^n) \in [N] \times \mathcal{X}^n \times \{0, 1\}^n$, under which $M \sim \pi$ and $P(X^n, Y^n|M = m) = p_{S,m}(X^n, Y^n)$.

The first ingredient in our approach is standard [27, 14, 24]. Let $\{f_1, \ldots, f_N\}$ be an arbitrary 2-ε-packing subset of F (that is, $\|f_i - f_j\|_1 > 2\varepsilon$ for all $i \neq j$). Suppose that S satisfies (4) on some Q that contains $\{P^1, \ldots, P^N\}$. Now consider
\[
\hat{M} \equiv \hat{M}(X^n, Y^n) \triangleq \arg \min_{1 \leq m \leq N} \|\hat{f}_n - f_m\|_1.
\]
(12)

Then the following lemma is easily proved using triangle inequality:

Lemma 1. With the above definitions, $p_{S,m}(\hat{M} \neq M) \leq \varepsilon$.

The second ingredient of our approach is an application of the data processing inequality (10) with a judicious choice of ϕ. Let $W \triangleq (M, X^n, Y^n)$, let M be uniformly distributed over $[N]$, $\pi(m) = \frac{1}{N}$ for all $m \in [N]$, and let p be the induced measure $p_{S,m}$. Then we have the following lemma (see also [17, 16]):

Lemma 2. Consider any probability measure Q for W, under which M is distributed according to π and independent of (X^n, Y^n). Let the divergence-generating function ϕ be such that the mapping $p \mapsto d_{\phi}(p||q)$ is nondecreasing on the interval $[\varepsilon, 1]$. Then, assuming that $\delta \leq 1 - \frac{\varepsilon}{N}$,
\[
D_{\phi}(p||q) \geq \frac{1}{N} \cdot \phi(N(1 - \delta)) + \left(1 - \frac{1}{N}\right) \cdot \phi\left(\frac{N\delta}{N - 1}\right).
\]
(13)

Proof. Define the indicator random variable $Z = 1_{\left\{\hat{M} = M\right\}}$. Then $P(Z = 1) \geq 1 - \delta$ by Lemma 1.

On the other hand, since Q can be factored as $Q(m, x^n, y^n) = \frac{1}{N}Q_X^n, Y^n(x^n, y^n)$, we have
\[
Q(Z = 1) = \sum_{m=1}^N Q(M = m, \hat{M} = m) = \frac{1}{N} \sum_{m=1}^N \sum_{x^n, y^n} Q_X^n, Y^n(x^n, y^n)1_{\left\{\hat{M}(x^n, y^n) = m\right\}} = \frac{1}{N}.
\]

Therefore,
\[
D_{\phi}(P||Q) \geq D_{\phi}(P_{Z||Q_{Z}}) = d_{\phi}(P(Z = 1)||Q(Z = 1)) \geq d_{\phi}(1 - \delta||1/N),
\]
where the first step is by the data processing inequality (10), the second is due to the fact that Z is binary, and the third is by the assumed monotonicity property of ϕ. Using (9), we arrive at (13).

Next, we need to choose the divergence-generating function ϕ and the auxiliary distribution Q.

5
Choice of ϕ. Inspection of the right-hand side of (13) suggests that the usual $\Omega(\log N)$ lower bounds [14, 27, 24] can be obtained if $\phi(u)$ behaves like $u \log u$ for large u. On the other hand, if $\phi(u)$ behaves like $-\log u$ for small u, then the lower bounds will be of the form $\Omega(\frac{1}{2})$. These observations naturally lead to the respective choices $\phi(u) = u \log u$ and $\phi(u) = -\log u$, corresponding to the KL divergence $D(P\|Q)$ and the reverse KL divergence $D_{\text{re}}(P\|Q) = D(Q\|P)$.

Choice of Q. One obvious choice of Q satisfying the conditions of the lemma is the product of the marginals $P_{\mathcal{M}} \equiv \pi$ and $P_{X^n,Y^n} \equiv N^{-1} \sum_{m=1}^{N} E_{\beta,m}^{S}: Q = P_{\mathcal{M}} \otimes P_{X^n,Y^n}$. With this Q and $\phi(u) = u \log u$, the left-hand side of (13) is given by

$$D(P\|Q) = D(P_{\mathcal{M},X^n,Y^n} \| P_{\mathcal{M}} \otimes P_{X^n,Y^n}) = I(M;X^n,Y^n),$$

where $I(M;X^n,Y^n) = I(M;X^n,Y^n)$ is the mutual information between M and (X^n,Y^n) with joint distribution P. On the other hand, it is not hard to show that the right-hand side of (13) can be lower-bounded by $(1-\delta)\log N - \log 2$. Combining with (14), we get

$$I(M;X^n,Y^n) \geq (1-\delta)\log N - \log 2,$$

which is a (commonly used variant of) the well-known Fano’s inequality [14, Lemma 4.1], [18, p. 1250], [27, p. 1571]. The same steps, but with $\phi(u) = -\log u$, lead to the bound

$$L(M;X^n,Y^n) \geq \left(1 - \frac{1}{N}\right) \log \frac{1}{\delta} - \log 2 \geq \frac{1}{2} \log \frac{1}{\delta} - \log 2,$$

where $L(M;X^n,Y^n) = D_{\text{re}}(P_{\mathcal{M},X^n,Y^n} \| P_{\mathcal{M}} \otimes P_{X^n,Y^n})$ is the so-called lautum information between M and (X^n,Y^n) [26], and the second inequality holds whenever $N \geq 2$.

However, it is often more convenient to choose Q as follows. Fix an arbitrary conditional distribution $Q_{Y|X}$ of $Y = \{0,1\}$ given $X \in \mathcal{X}$. Given a learning scheme S, define the probability measure

$$Q^{S}(x^n,y^n) = \prod_{t=1}^{n} Q_{Y|X}(y_t|x_t) E_{\beta,m}^{S} \left[N(x|X^n)\right],$$

and let $Q(m,x^n,y^n) = \frac{1}{N} Q^{S}(x^n,y^n)$ for all $m \in [N]$.

Lemma 3. For each $x^n \in \mathcal{X}^n$ and $y \in \mathcal{X}$, let $N(y|x^n) \triangleq |\{1 \leq t \leq n : x_t = y\}|$. Then

$$D(P\|Q) = \frac{1}{N} \sum_{m=1}^{N} \sum_{x \in \mathcal{X}} D(P_{Y|X}^{m} \| Q_{Y|X}(\cdot|x)) E_{\beta,m} \left[N(x|X^n)\right];$$

$$D_{\text{re}}(P\|Q) = \frac{1}{N} \sum_{m=1}^{N} \sum_{x \in \mathcal{X}} D_{\text{re}}(P_{Y|X}^{m} \| Q_{Y|X}(\cdot|x)) E_{\beta,m} \left[N(x|X^n)\right].$$

Moreover, if the scheme S is passive, then Eq. (17) becomes

$$D_{\text{re}}(P\|Q) = n \cdot E_{X} E_{M} \left[D_{\text{re}}(P_{Y|X}^{m} \| Q_{Y|X}(\cdot|X))\right],$$

and the same holds for D_{re} replaced by D.

4 Proofs of Theorems 1 and 2

Combinatorial preliminaries. Given $k \in \mathbb{N}$, consider the k-dimensional Boolean cube $\{0,1\}^k = \{\beta = (\beta_1, \ldots, \beta_k) : \beta_i \in \{0,1\}, i \in [k]\}$. For any two $\beta, \beta' \in \{0,1\}^k$, define their Hamming distance $d_H(\beta, \beta') \triangleq \sum_{i=1}^{k} 1(\beta_i \neq \beta_i)$. The Hamming weight of any $\beta \in \{0,1\}^k$ is the number of its nonzero coordinates. For $k > d$, let $\{0,1\}^k_d$ denote the subset of $\{0,1\}^k$ consisting of all binary strings with Hamming weight d. We are interested in large separated and well-balanced subsets of $\{0,1\}^k_d$. To that end, we will use the following lemma:

Lemma 4. Suppose that d is even and $k > 2d$. Then, for d sufficiently large, there exists a set $\mathcal{M}_{k,d} \subset \{0,1\}^k_d$ with the following properties: (i) $\log |\mathcal{M}_{k,d}| \geq \frac{d}{4} \log \frac{k}{6d}$; (ii) $d_H(\beta, \beta') > d$ for any two distinct $\beta, \beta' \in \mathcal{M}_{k,d}^2$; (iii) for any $j \in [k]$,

$$\frac{d}{2k} \leq \frac{1}{|\mathcal{M}_{k,d}|} \sum_{\beta \in \mathcal{M}_{k,d}} \beta_j \leq \frac{3d}{2k}.$$
Proof of Theorem 1. Without loss of generality, we take $X = \mathbb{N}$. Let $k = d\tau(\varepsilon)$ (we increase ε if necessary to ensure that $k \in \mathbb{N}$), and consider the probability measure Π that puts mass $\varepsilon/2$ on each $x = k$ and the remaining mass $1 - \varepsilon/2$ on $x = k + 1$. (Recall that $\tau(\varepsilon) \leq 1/\varepsilon$.)

Let \mathcal{F} be the class of indicator functions of all subsets of X with cardinality d. Then $\text{VC-dim}(\mathcal{F}) = d$. We will focus on a particular subclass \mathcal{F}' of \mathcal{F}. For each $\beta \in \{0, 1\}^k_d$, define $f_\beta : X \rightarrow \{0, 1\}$ by $f_\beta(x) = \beta_x$ if $x \in [k]$ and 0 otherwise, and take $\mathcal{F}' = \{f_\beta : \beta \in \{0, 1\}^k_d\}$. For $p \in [0, 1]$, let ν_p denote the probability distribution of a Bernoulli(p) random variable. Now, to each $f_\beta \in \mathcal{F}'$, let us associate the following conditional probability measure $P_{\gamma|X}^\beta$:

$$P_{\gamma|X}^\beta(y|x) = [\nu_{(1-h)/2}(y)\beta_x + \nu_{(1-h)/2}(y)(1 - \beta_x)]\mathbf{1}_{\{x \in [k]\}} + \mathbf{1}_{\{y = 0\}}\mathbf{1}_{\{x \notin [k]\}}$$

It is easy to see that each $P_{\gamma|X}^\beta$ belongs to $\mathcal{C}(\mathcal{F}, h)$. Moreover, for any two $f_\beta, f_{\beta'} \in \mathcal{F}$ we have

$$\|f_\beta - f_{\beta'}\|_{L_1(\Pi)} = \Pi(f_\beta(X) \neq f_{\beta'}(X)) = \frac{\varepsilon}{d} \sum_{i=1}^k \mathbf{1}_{\{\beta_i \neq \beta'_i\}} = \frac{\varepsilon}{d} d_H(\beta, \beta').$$

Hence, for each choice of $f^* = f_\beta, \beta \in \mathcal{F}$ we have $D_\varepsilon(f_\beta^*) = \{f_\beta : \Pi(\{x : f_\beta(X) \neq f_{\beta'}(X)\}) \leq d\}. This implies that $D_\varepsilon(f_\beta^*) = \{f_\beta : \|f_\beta - f_{\beta'}\|_{L_1(\Pi)} \leq d\}. We have thus established that, for each $\beta \in \{0, 1\}^k_d$, the probability measure $P_\beta = \Pi \otimes P_{\gamma|X}^\beta$ is an element of $\mathcal{P}(\Pi, \mathcal{F}, h, \tau, \varepsilon)$.

Finally, let $\mathcal{M}_{k,d} \subset \{0, 1\}^k_d$ be the set described in Lemma 4, and let $\mathcal{G} \triangleq \{f_\beta : \beta \in \mathcal{M}_{k,d}\}$. Then for any two distinct $\beta, \beta' \in \mathcal{M}_{k,d}$ we have $\|f_\beta - f_{\beta'}\|_{L_1(\Pi)} = \frac{\varepsilon}{d} d_H(\beta, \beta') > \varepsilon$. Hence, \mathcal{G} is a ε-packing of \mathcal{F}' in the $L_1(\Pi)$-norm.

Now we are in a position to apply the lemmas of Section 3. Let $\beta(1), \ldots, \beta(N)$, $N = |\mathcal{M}_{k,d}|$, be a fixed enumeration of the elements of $\mathcal{M}_{k,d}$. For each $m \in [N]$, let us denote by $P_{\gamma|X}^\beta(m)$ the conditional probability measure $P_{\gamma|X}^\beta$, by P^m the measure $\Pi \otimes P_{\gamma|X}^\beta$ on $X \times \{0, 1\}$, and by $f_m \in \mathcal{G}$ the corresponding Bayes classifier. Now consider any n-step passive learning scheme that $(\varepsilon/2, \delta)$-learns $\mathcal{P}(\Pi, \mathcal{F}, h, \tau, \varepsilon, \gamma)$, and define the probability measure $P \in [N] \times X^n \times \{0, 1\}^n$ by $P(m, x^n, y^n) = \frac{1}{N} P^m(x^n, y^n)$, where P^m is constructed according to (11). In addition, for every $\gamma \in (0, 1)$ define the auxiliary measure Q_γ on $[N] \times X^n \times \{0, 1\}^n$ by $Q_\gamma(m, x^n, y^n) = \frac{1}{N} Q_{\gamma}^m(x^n, y^n)$, where Q_{γ}^m is constructed according to (15) with

$$Q_{\gamma|X}^\beta(y|x) \triangleq \nu_p(y)\mathbf{1}_{\{x \in [k]\}} + \mathbf{1}_{\{y = 0\}}\mathbf{1}_{\{x \notin [k]\}}.$$

Applying Lemma 2 with $\phi(u) = u \log u$, we can write

$$D(P \| Q_\gamma) \geq (1 - \delta) \log N - \log 2 \geq \frac{(1 - \delta)d}{4} \log \frac{k}{6d} - \log 2 \tag{20}$$

Next we apply the lemmas. Defining $\eta = \frac{1 + h}{2}$ and using the easily proved fact that

$$D(P_{\gamma|X}^\beta(x) \| Q_{\gamma|X}^\beta(x)) = [d(\eta\|\gamma) - d(1 - \eta\|\gamma)] f_m(x) + (1 - \eta\|\gamma)\mathbf{1}_{\{x \in [k]\}},$$

we get

$$D(P \| Q_{\gamma}) = n\varepsilon [d(\eta\|\gamma) + (\tau(\varepsilon) - 1)d(1 - \eta\|\gamma)]. \tag{21}$$

Therefore, combining Eqs. (20) and (21) and using the fact that $k = d\tau(\varepsilon)$, we obtain

$$n \geq \frac{(1 - \delta)d\log\frac{\tau(\varepsilon)}{6} - \log 16}{4\varepsilon [d(\eta\|\gamma) + (\tau(\varepsilon) - 1)d(1 - \eta\|\gamma)]}, \quad \forall \gamma \in (0, 1) \tag{22}$$

This bound is valid for all $h \in (0, 1]$, and the optimal choice of γ for a given h can be calculated in closed form: $\gamma^*(h) = \frac{1 + h}{2} + \frac{h}{\tau(\varepsilon)}$. We now turn to the reverse KL divergence. First, suppose that $h \neq 1$. Lemma 2 gives $D_{re}(P \| Q_{1-\eta}) \geq (1/2) \log(1/\delta) - \log 2$. On the other hand, using the fact that

$$D_{re}(P_{\gamma|X}^\beta(x) \| Q_{\gamma|X}^{1-\eta}(x)) = d(\eta\|1 - \eta)f_m(x) \tag{23}$$
and applying Eq. (18), we can write

\[D_{re}(P||Q_{1-\eta}) = n \varepsilon \cdot \log(1 - \eta) = n \varepsilon \cdot h \log \frac{1 + h}{1-h}. \]

(24)

We conclude that

\[n \geq \left(\frac{1}{2} \log \frac{1}{\varepsilon} - \log 2 \right) \varepsilon h \log \frac{1+h}{1-h}. \]

(25)

For \(h = 1 \), we get the vacuous bound \(n \geq 0 \).

Now we consider the two cases of Theorem 1.

(1) For a fixed \(K > 1 \), it follows from the inequality \(\log u \leq u - 1 \) that \(h \log \frac{1+h}{1-h} \leq Kh^2 \) for all \(h \in (0, 1 - K^{-1}] \). Choosing \(\gamma = \frac{1-h}{2} \) and using Eqs. (22) and (25), we obtain (5).

(2) For \(h = 1 \), we use (22) with the optimal setting \(\gamma^* (1) = 1/\tau(\varepsilon) \), which gives (6). The transition between \(h = 1 \) and \(h \neq 1 \) is smooth and determined by \(\gamma^*(h) = \frac{1-h}{2} + \frac{h}{\tau(\varepsilon)} \).

Proof of Theorem 2. We work with the same construction as in the proof of Theorem 1. First, let \(Q_{X^n,Y^n} \triangleq \frac{1}{N} \sum_{m=1}^{N} P^{k,m} \). and \(Q = \pi \otimes Q_{X^n,Y^n} \), where \(\pi \) is the uniform distribution on \([N]\). Then, by convexity,

\[D(P||Q) \leq \frac{1}{N^2} \sum_{m,m'=1}^{N} \mathbb{E}_P \left[\sum_{l=1}^{n} \log \frac{P_{Y|X}^m(Y_l|X_l)}{P_{Y|X}^{m'}(Y_l|X_l)} \right] \leq n \max_{m,m' \in [N]} \max_{x \in [k]} D(P_{Y|X}^m(\cdot|x)||P_{Y|X}^{m'}(\cdot|x)) \]

which is upper bounded by \(nh \log \frac{1+h}{1-h} \). Applying Lemma 2 with \(\phi(u) = u \log u \), we therefore obtain

\[n \geq \frac{(1 - \delta)d \log \frac{k}{\max} - \log 16}{4h \log \frac{1+h}{1-h}}. \]

(26)

Next, consider the auxiliary measure \(Q_{1-\eta} \) with \(\eta = \frac{1+h}{2} \). Then

\[D_{re}(P||Q_{1-\eta}) \leq \frac{1}{N} \sum_{M=1}^{N} \sum_{x=1}^{k} \left(d(\cdot|1-\eta) \frac{1}{N} \sum_{m=1}^{N} f_m(x) \mathbb{E}_{Q_{1-\eta}} [N(x|X^n)] \right) \]

\[= d(\cdot|1-\eta) \frac{1}{N} \sum_{m=1}^{N} f_m(x) \mathbb{E}_{Q_{1-\eta}} [N(x|X^n)] \]

\[= d(\cdot|1-\eta) \frac{1}{N} \sum_{m=1}^{N} f_m(x) \mathbb{E}_{Q_{1-\eta}} [N(x|X^n)] \]

\[\leq \frac{3}{2\tau(\varepsilon)} h \log \frac{1+h}{1-h} \mathbb{E}_{Q_{1-\eta}} \left[\sum_{x=1}^{k} N(x|X^n) \right] \]

\[\leq \frac{3}{2\tau(\varepsilon)} h \log \frac{1+h}{1-h}, \]

where (a) is by Lemma 3, (b) is by (23), (c) is by definition of \(\{f_m\} \), (d) is by the balance condition (19) satisfied by \(M_{k,d} \), and (e) is by the fact that \(\sum_{x=1}^{k} N(x|X^n) \leq \sum_{x \in X} N(x|X^n) = n \).

Applying Lemma 2 with \(\phi(u) = -\log u \), we get

\[n \geq \frac{\tau(\varepsilon) (\log \frac{1}{\varepsilon} - \log 4)}{3h \log \frac{1+h}{1-h}}. \]

(27)

Combining (26) and (27) and using the bound \(h \log \frac{1+h}{1-h} \leq Kh^2 \) for \(h \in (0, 1 - K^{-1}] \), we get (7).
References

