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Abstract

We discuss new methods for the recovery of signals with block-sparse structure,
based on `1-minimization. Our emphasis is on the efficiently computable error
bounds for the recovery routines. We optimize these bounds with respect to the
method parameters to construct the estimators with improved statistical proper-
ties. We justify the proposed approach with an oracle inequality which links the
properties of the recovery algorithms and the best estimation performance.

1 Introduction

Suppose an observation y ∈ Rm is available where

y = Ax+ u+Dξ. (1)

Here A is a given m× n sensing matrix, x ∈ Rn is an unknown vector, u is an unknown (determin-
istic) nuisance parameter, known to belong to a certain set U ⊂ Rm, D ∈ Rm×m is known noise
intensity matrix, and ξ ∈ Rm is random noise with standard normal distribution.

We aim to recover a linear transformation w = Bx of the signal x, whereB is a givenN×nmatrix,
under the assumption that w is block-sparse. Namely, the space W(= RN ) where w “lives” is
represented asW = Rn1× ...×RnK , so that w = Bx ∈ RN is a block vector: w = [w[1]; ...;w[K]]
with blocks w[k] = B[k]x ∈ Rnk , 1 ≤ k ≤ K, where B[k], 1 ≤ k ≤ K are nk × n matrices.
The s-block-sparsity of w means that at most a given number s of the blocks u[k], 1 ≤ k ≤ K, are
nonzero.

To motivate the interest for the presented model, let us consider two examples.

Tracking of a singularly perturbed linear system Consider a discrete-time linear system

z[i] = Gz[i− 1] + w[i] + Fη[i], i = 1, 2, ..., z[0] ∈ Rd,

where Fη[i] are random perturbations with η[i] being i.i.d. standard normal vectors η[i] ∼ N (0, Id),
and G, F ∈ Rd×d are known matrices. We assume that the perturbation vectors w[i] ∈ Rd i =
1, 2, ... are mostly zeros, but a small proportion of w[i] are nonvanishing unknown vectors in Rd.
Suppose that we are given the linear noisy observation y ∈ Rm, such that y = A[z[0]; ...z[K]] +σξ,
where the matrix A ∈ Rm×d(K+1) and the noise intensity σ > 0 are known, and ξ ∼ N (0, Im).
Given y, our objective is to recover the sequence of perturbations w = [w[k]]Kk=1, w[k] ∈ Rd, and
the trajectory z of the system.
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To fit the tracking problem into the basic framework let us decompose z = x + ζ, where x =
[x[0]; ...;x[K]] with x[i] = Gx[i − 1] + w[i], x[0] = z[1], and ζ = [ζ[0]; ...; ζ[K]] with ζ[i] =
Gζ[i− 1] + Fη[i], ζ[0] = 0. Then

y = Ax+ [Aζ + σξ],

where the distribution of Aζ + σξ is normal with zero mean and the covariance matrix D2 =
AV AT + σ2I . Here the Kd×Kd covariance matrix V of ζ has the block structure with blocks

V k,` = Cov(ζ[k], ζ[`]) =

`∧k∑
i=1

G`−iFFT (GT )k−i,

with
∑0

1 = 0, by convention.

Image reconstruction with regularization by Total Variation (TV) [21, 7] Here one looks to
recover an image Z ∈ Rn1×n2 from a blurred noisy observation y: y = Az + σξ, y ∈ Rm, where
z = Col(Z) ∈ Rn, n = n1n2, A ∈ Rm×n is the matrix of discrete convolution, σ > 0 is known,
and ξ ∼ N (0, Im). We assume that the image z may be decomposed as z = x + v, where v is a
“regular component”, which is modeled by restricting v to belong to the set V of “smooth images”;
let w = Bx ∈ Rn×2, be the (discretized) gradient of the x-component at the points of the grid.
In this example Bx naturally splits into 2-dimensional blocks and TV is nothing but the sum of `2
norms of these blocks. We suppose that w is (nearly) sparse. When denoting u = Av we come to
the observation model y = Ax+ u+Dξ, with u ∈ U = AV , D = σI , and ξ ∼ N (0, Im).

The recovery routines we consider are based on the block-`1 minimization, i.e., the estimate ŵ(y)

of w = Bx is ŵ = Bx̂(y), where x̂(y) is obtained by minimizing the norm
∑K
k=1 ‖B[k]z‖(k) over

signals z ∈ Rn with Az “fitting,” in certain precise sense, the observations y. Above, ‖ · ‖(k) are
given in advance norms on the spaces Rnk where the blocks of w take their values.

In the sequel we refer to the given in advance collection B = (B,n1, ..., nK , ‖ · ‖(1), ..., ‖ · ‖(K))
as to the representation structure. Given such a structure B and matrix A, our goal is to understand
how well one can recover the s-block-sparse transform Bx by appropriately implemented block-`1
minimization.

Related Compressed Sensing research Our situation and goal form a straightforward extension
of the usual block sparsity Compressed Sensing framework. Indeed, the standard representation
structureB = In, nk = 1, ‖·‖(k) = | · |, 1 ≤ k ≤ K = n, leads to the standard Compressed Sensing
setting – recovering a sparse signal x ∈ Rn from its noisy observations (1) via `1 minimization. With
the same B = In and nontrivial block structure {nk, ‖ · ‖(k)}Kk=1, we arrive at block-sparsity and
related block-`1 minimization routines considered in numerous recent papers. There is a number
of applications where block-sparsity seem to arise naturally (see, e.g., [10] and references therein).
Several methods of estimation and selection extending the plain `1-minimization to block sparsity
were proposed and investigated recently. Most of the related research is focused so far on block
regularization schemes – Lasso-type algorithms

x̂(y) ∈ Argmin
z=[z[1];...;z[K]]∈Rn=Rn1×...×RnK

{
‖Az − y‖22 + λL[1,2](z)

}
, L[1,2](z) =

K∑
k=1

‖z[k]‖2,

‖ · ‖2 being the “usual” `2-norm on Rnk . In particular, the huge literature on plain Lasso has a
significant counterpart on group Lasso, see, e.g., [1, 2, 8, 9, 10, 11, 16, 19, 20, 22, 23], and references
therein. Another classical Compressed Sensing estimator, Dantzig Selector, is studied in the block-
sparse case in [12, 17]. The available theoretical results allows to bound the errors of recovery in
terms of magnitude of the observation noise and “s-concentration” of the true signal x (that is, its
L[1,2] distance from the space of signals with at most s nonzero blocks). Typically, these results deal
with the quadratic risks of estimation and rely on a natural block analogy (“Block RIP,” see, e.g.,
[10]) of the celebrated Restricted Isometry property for the sensing matrix A, introduced by Candés
and Tao [5], or on a block analogy [18] of the Restricted Eigenvalue property from [3].

Contributions of this work To the best of our knowledge, the conditions used when studying
theoretical properties of block-sparse recovery (with a notable exception of the Mutual Block In-
coherence condition of [9]) are unverifiable. The latter means that given the matrix A, one cannot
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answer in any reasonable time if the (block-) RI or RE property holds with given parameters. While
the efficient verifiability of a condition is by no means necessary for a condition to be meaningful
and useful, we believe also that verifiability has its value and is worthy of being investigated. In par-
ticular, the verifiability property allows us to design new recovery routines with explicit confidence
bounds for the recovery error and optimize these bounds with respect to the method parameters.
Thus, the major novelty in what follows is the emphasis on verifiable conditions on A and the repre-
sentation structure which guarantee good recovery of Bx from noisy observations of Ax, provided
that Bx is nearly s-block-sparse, and the observation noise is low. In this respect, this work extends
the results of [15, 13, 14], where `1-recovery of the “usual” sparse vectors was considered (in the
first two papers – in the case of uncertain-but-bounded observation errors, and in the third – in the
case of Gaussian observation noise). We propose new routines of block-sparse recovery which ex-
plicitly utilize the verifiability certificate – the contrast matrix, and show how these routines may be
tuned to attain the best performance bounds.

The rest of the manuscript is organized as follows. In Section 2 we give the detailed problem
statement and introduce the family Qs,q , 1 ≤ q ≤ ∞, of conditions which underly the subsequent
developments. Then in Section 2.3 we introduce the recovery routines and provide the bounds for
their risks. We discuss the properties of conditions Qs,q in Section 3. In particular, in Section 3.1 we
show how one can efficiently verify (the strongest from the family Qs,q) condition Qs,∞. Then in
Section 3.2 we provide an oracle inequality which shows that the condition Qs,∞ is also necessary
for recovery of block-sparse signals in `∞-norm.

2 Accuracy bounds for `1-recovery routines

2.1 Problem statement and notations

Let w = Bx ∈ W = Rn1 × ... × RnK . To streamline the presentation, we restrict ourselves to
the case where all the norms ‖ · ‖(k) on the factors of the representations are the usual `r-norms,

1 ≤ r ≤ ∞: ‖w[k]‖r = (
∑nk
i=1 |w[k]i|r)

1
r , i.e., the representation structures we consider are

B = (B, n1, ..., nK , ‖ · ‖r). Let r∗ = r
r−1 , so that ‖ · ‖r∗ is the norm conjugate to ‖ · ‖r. A vector

w = [w[1]; ...;w[K]] fromW is called s-block-sparse, if the number of nonzero blocks w[k] ∈ Rnk
in w is at most s.

For w ∈ W , we call the number ‖w[k]‖r the magnitude of k-th block in w, and denote by ws the
representation vector obtained from w by zeroing out all but the s largest in magnitude blocks in
w (with the ties resolved arbitrarily). For w ∈ W and 1 ≤ p ≤ ∞, we denote by L[p,r](w) the
‖ · ‖p-norm of the vector [‖w[1]‖r; ...; ‖w[K]‖r], so that L[p,r](·) is a norm onW with the conjugate
norm L∗[p,r](w) = ‖[‖w[1]‖(r∗); ...; ‖w[K]‖(r∗)]‖p∗ , p∗ = p

p−1 . Given a positive integer s ≤ K, we
set Ls,[p,r](w) = L[p,r](w

s); note that Ls,[p,r](·) is a norm onW . When the representation structure
B of x (and thus the norm ‖ · ‖r) is fixed, we use the notation Lp, L∗p, and Ls,p, instead of L[p,r],
L∗[p,r], and Ls,[p,r].

The recovery problem we are interested in is as follows: suppose we are given an indirect observation
(cf (1))

y = Ax+ u+Dξ

of unknown signal x ∈ Rn. Here A ∈ Rm×n, u + Dξ is the observation error; in this error, u is
an unknown nuisance known to belong to a given compact convex set U ⊂ Rm symmetric w.r.t. the
origin, D ∈ Rm×m is known, and ξ ∼ N (0, Im).

We want to recover x and the representation w = Bx of x, knowing in advance that this representa-
tion is nearly s-block-sparse, for some given s. Specifically, we consider the set

X(s, υ) = {x ∈ Rn : L1(Bx− [Bx]s) ≤ υ}.

A recovery routine is a Borel function x̂(y) : Rm → Rn and we characterize the performance of
such a routine by its Lp-risk of recovery ŵ(y) = Bx̂(y) of w = Bx:

Riskp(ŵ(·)|s,D, υ, ε)
= inf {δ : Probξ {Lp (ŵ(y)− w) ≤ δ ∀(u ∈ U , x ∈ X(s, υ))} ≥ 1− ε} .
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here 0 ≤ ε ≤ 1 and 1 ≤ p ≤ ∞. In other words, Riskp(ŵ(·)|s,D, υ, ε) ≤ δ if and only if there
exists a set Ξ ∈ Rm of “good realizations of ξ” such that Prob{ξ ∈ Ξ} ≥ 1 − ε and the L[p,r]-
norm of B[x̂(y) − x] is ≤ δ whenever ξ ∈ Ξ, u ∈ U , and whenever x ∈ Rn is such that Bx
can be approximated by s-block-sparse representation vector within accuracy υ (measured in the
L[1,r]-norm).

2.2 Condition Qs,q(κ)

Let a sensing matrix A and a representation structure B = (B,n1, ..., nK , ‖ · ‖r) be given, and let
s ≤ K be a positive integer, q ∈ [1,∞] and κ > 0. We say that a pair (H, ‖ · ‖), where H ∈ Rm×M
and ‖ · ‖ is a norm on RM , satisfies the condition Qs,q(κ) associated with the matrix A and B, if

∀x ∈ Rn : Ls,q(Bx) ≤ s
1
q ‖HTAx‖+ κs

1
q−1L1(Bx). (2)

The following is an evident observation.

Observation 2.1 Given A and a representation structure B, let (H, ‖ · ‖) satisfy Qs,q(κ). Then
(H, ‖ · ‖) satisfies Qs,q′(κ

′) for all q′ ∈ (1, q) and κ′ ≥ κ. Besides this, if s′ ≤ s is a positive
integer, ((s/s′)

1
qH, ‖ · ‖) satisfies Qs′,q((s

′/s)1−
1
q κ).

Whenever (B,n1, ..., nK , ‖ · ‖r) is the standard representation structure, meaning that B is the
identity matrix, n1 = 1, and ‖ · ‖r = | · |, the condition Qs,q(κ) reduces to the condition Hs,q(κ)
introduced in [14].

2.3 `1-Recovery Routines

We consider two block-sparse recovery routines.

Regular `1 recovery is given by

x̂reg(y) ∈ Argmin
z

{
L1(Bz) : ‖HT (Az − y)‖ ≤ ρ

}
,

where H ∈ Rm×M , ‖ · ‖ and ρ > 0 are parameters of the construction.

Theorem 2.1 Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Let also ε ∈ (0, 1). Assume
that the parameters H , ‖ · ‖, ρ of the regular `1-recovery are such that

A. (H, ‖·‖) satisfies the condition Qs,q(κ) associated with the matrixA and the representation
structure B;

B. There exists a set Ξ ⊂ Rm such that Prob(ξ ∈ Ξ) ≥ 1− ε and

‖HT (u+Dξ)‖ ≤ ρ ∀(u ∈ U , ξ ∈ Ξ). (3)

Then for all 1 ≤ p ≤ q and υ > 0,

Riskp(Bx̂reg(y)|s,D, υ, ε) ≤ (4s)
1
p

2ρ+ s−1υ

1− 2κ
, 1 ≤ p ≤ q. (4)

Penalized `1 recovery is
x̂pen(y) ∈ Argmin

z

{
L1(Bz) + 2s‖HT (Az − y)‖

}
,

where H ∈ Rm×M , ‖ · ‖ and a positive integer s are parameters of the construction. The accuracy
of the penalized recovery is given by the following analogue of Theorem 2.1:

Theorem 2.2 Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Let also ε ∈ (0, 1). Assume
that the parameters H , ‖ · ‖, s of the penalized recovery and a ρ ≥ 0 satisfy conditions A, B from
Theorem 2.1. Then for all 1 ≤ p ≤ q and υ > 0 we have

Riskp(Bx̂pen(y)|s,D, υ, ε) ≤ 2(2s)
1
p

2ρ+ s−1υ

1− 2κ
, 1 ≤ p ≤ q, (5)

cf. (4).
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3 Evaluating Condition Qs,∞(κ)

The condition Qs,q(κ), of Section 2.2, is closely related to known conditions, introduced to study
the properties of recovery routines in the context of block-sparsity. Let us consider the representation
structure with B = In. If the norm ‖ · ‖ in (2) is chosen to be the `∞-norm, we have the following
obvious observation:

(!) Let H satisfy Qs,q(κ) and let λ̂ be the maximum of the Euclidean norms of
columns in H . Then

∀x ∈ Rn : Ls,q(x) ≤ λ̂s
1
q ‖Ax‖2 + κs

1
q−1L1(x).

Note that conditions of this kind with κ < 1/2 and ‖·‖r = ‖·‖2 play a crucial role in the performance
analysis of group-Lasso and Dantzig Selector. For example, the error bounds for Lasso recovery,
obtained in [18] rely upon the Restricted Eigenvalue assumption RE(s,κ) which is as follows: there
is κ > 0 such that

L2(xs) ≤ 1

κ
‖Ax‖2 whenever 3L1(xs) ≥ L1(x− xs).

Hence, Ls,1(x) ≤
√
sLs,2(x) ≤

√
s

κ ‖Ax‖2 whenever 4Ls,1(x) ≥ L1(x), so that

∀x ∈ Rn : Ls,1(x) ≤ s1/2

κ
‖Ax‖2 +

1

4
L1(x) (6)

(observe that (6) is nothing but the “block version” of the Compatibility condition from [4]).

The bad news is that, in general, condition Qs,q(κ), as well as RE and Compatibility conditions,
cannot be verified. Specifically, given a sensing matrix A and a representation structure B, it seems
to be difficult even to verify that a pair (H, ‖·‖) satisfies condition Qs,q(κ) associated withA, B, let
alone to synthesize suchH which satisfies this condition and results in the best possible error bounds
(4), (5) for the regular and the penalized `1-recoveries. The good news is that when ‖ · ‖r is the
uniform norm ‖·‖∞ and, in addition, q =∞ the condition Qs,q(κ) becomes “fully computationally
tractable”.1 We intend to demonstrate also that this condition Qs,∞(κ) is in fact necessary for the
bounds of the form (4), (5) to be valid when p =∞.

3.1 Condition Qs,∞(κ), case r =∞: tractability

Consider the case of the representation structure B∞ = (B,n1, ...nK , ‖·‖∞). We have the following
result.

Proposition 3.1 Let ‖ · ‖(k) = ‖ · ‖∞ for all k ≤ K, and let a positive integer s and reals κ > 0,
ε ∈ (0, 1) be given.

(i) Assume that a triple (H, ‖ · ‖, ρ), where H ∈ RM×m, ‖ · ‖ is a norm on RM , and ρ ≥ 0, is such
that

(!) (H, ‖·‖) satisfies Qs,∞(κ) and the set Ξ = {ξ : ‖HT [u+Dξ]‖ ≤ ρ ∀u ∈ U}
is such that Prob(ξ ∈ Ξ) ≥ 1− ε.

Then there existN = n1+...+nK vectors h1, ..., hN in Rm andN×N block matrix V = [V k`]Kk,`=1

(the blocks V k` of V are nk × n` matrices) such that
(a) B = V B + [h1, ..., hN ]TA,
(b) ‖V k`‖∞,∞ ≤ s−1κ ∀k, ` ≤ K
(here ‖V k`‖∞,∞ = max1≤j≤n` ‖Rowj(V k`)‖1, Rowj(M) being the j-th row of M ),

(c) Prob
(

Ξ+ := {ξ : max
u∈U

uThi + |(Dξ)Thi| ≤ ρ, 1 ≤ i ≤ N}
)
≥ 1− ε.

(7)

(ii) Whenever vectors h1, ..., hN ∈ Rm and a matrix V = [V k`]Kk,`=1 satisfy (7), the m×N matrix

Ĥ = [h1, ..., hN ], the norm ‖ · ‖∞ on RN and ρ form a triple satisfying (!).
1Recall that by Observation 2.1, q = ∞ corresponds to the strongest among the conditions Qs,q(κ) asso-

ciated with A and a given representation structure B and ensures the validity of the bounds (4) and (5) in the
largest possible range, 1 ≤ p ≤ ∞, of values of p.
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Discussion. Let a sensing matrix A ∈ Rm×n and a representation structure B∞ be given, along
with a positive integer s, an uncertainty set U , and quantities D and ε. Recall that Theorems 2.1, 2.2
say that if a triple (H, ‖ · ‖, ρ) is such that (H, ‖ · ‖) satisfies Qs,∞(κ) with κ < 1/2 and H, ρ are
such that for the set

Ξ = {ξ : ‖HT [u+Dξ]‖ ≤ ρ ∀u ∈ U}

it holds P (Ξ) ≥ 1 − ε, then for all υ ≥ 0, for the regular `1 recovery associated with (H, ‖ · ‖, ρ)
and for the penalized `1 recovery associated with (H, ‖ · ‖, s) one has:

Riskp(Bx̂|s,D, υ, ε) ≤ 2(2s)
1
p

2ρ+ s−1υ

1− 2κ
, 1 ≤ p ≤ ∞. (8)

Proposition 3.1 states that when applying this result, we lose nothing by restricting ourselves with
triples H = [h1, ..., hN ] ∈ Rm×N , N = n1 + ...+ nK , ‖ · ‖ = ‖ · ‖∞ on RN , ρ ≥ 0 which can be
augmented by an appropriately chosen N × N matrix V to satisfy relations (7). In the rest of this
discussion, it is assumed that we are speaking about triples (H, ‖ · ‖, ρ) satisfying the just defined
restrictions.

Now, as far as bounds (8) are concerned, they are completely determined by two parameters — κ
(which should be < 1/2) and ρ; the smaller are these parameters, the better are the bounds. In what
follows we address the issue of efficient synthesis of matrices H with “as good as possible” values
of κ and ρ.

Observe, first, that H = [h1, ..., hN ] and κ should admit an extension by a matrix V to a solution of
the system of constraints (7). Let µU (h) = max

u∈U
uTh. Note that the restriction

Prob
(
Ξ+ =

{
ξ : µU (hi) + |(Dξ)Thi| ≤ ρ, 1 ≤ i ≤ N

})
≥ 1− ε, (9)

implies that

ρ ≥ max
1≤i≤N

[
µU (hi) + erfinv

( ε
2

)
‖DThi‖2

]
,

where erfinv(·) is the inverse error function2, and it is implied by

ρ ≥
[
µU (hi) + erfinv

( ε

2N

)
‖DThi‖2

]
, 1 ≤ i ≤ N. (10)

Ignoring the “gap” between erfinv(ε/2) and erfinv
(
ε

2N

)
, we can safely model the restriction (9) by

the system of convex constraints (10). Thus, the set Gs of admissible κ, ρ can be safely approxi-
mated by the computationally tractable convex set

G∗s =

{
(κ, ρ) : ∃H = [h1, ..., hN ] ∈ Rm×N , V = [V k` ∈ Rnk×n` ]Kk,`=1 s.t.

B = BV +HTA, ‖V k`‖∞,∞ ≤
κ

s
, 1 ≤ k, ` ≤ K

max
u∈U

uThi + erfinv
( ε

2N

)
‖DThi‖2 ≤ ρ, 1 ≤ i ≤ N

}

3.2 Condition Qs,∞(κ), case r =∞: necessity

Let the representation structure B∞ = (B,n1, ..., nK , ‖ · ‖∞) be fixed. From the above discussion
we know that if, for some κ < 1/2 and ρ > 0, there exist H = [h1, ..., hN ] ∈ Rm×N and
V = [V k` ∈ Rnk×n` ]Kk,`=1 satisfying (7), then regular `1-recovery with appropriate choice of
parameters ensures that

Risk∞(Bx̂reg|s,D, υ, ε) ≤
2ρ+ s−1υ

1− 2κ
. (11)

We are about to demonstrate that this implication can be “nearly inverted:”

2i.e., u = erfinv(δ) means that 1√
2π

∫∞
u
e−t

2/2dt = δ.
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Proposition 3.2 Let a sensing matrix A, an uncertainty set U , and reals κ > 0, ε ∈ (0, 1) be
given. Assume also that the observation error “is present,” specifically, that for every r > 0, the set
{u+De : u ∈ U , ‖e‖2 ≤ r} contains a neighborhood of the origin.

Given a positive integer S, assume that there exists a recovering routine x̂ satisfying an error bound
of the form (11), namely,

∀(x ∈ Rn, u ∈ U) : Probξ{‖B[x̂(y)− x]‖∞ ≤ α+ S−1L1(Bx− [Bx]S)} ≥ 1− ε. (12)

for some α > 0. Then there exist H = [h1, ..., hN ] ∈ Rm×N and V = [V k` ∈ Rnk×n` ]Kk,`=1,
satisfying

(a) B = V B +HTA,

(b) ‖V k`‖∞,∞ ≤ 2S−1 ∀k, ` ≤ K,
with

(c) ρ := max
1≤i≤N

[
max
u∈U

uThi + erfinv(
ε

2N
)‖DThi‖2

]
≤ 2α

erfinv
(
ε

2N

)
erfinv

(
ε
2

) ,
and such that

Prob
(

Ξ+ := {ξ : max
u∈U

uThi + |(Dξ)Thi| ≤ ρ, 1 ≤ i ≤ N}
)
≥ 1− ε.

The latter exactly means that the exhibited H satisfies the condition Qs,∞(κ) (see Proposition 3.1)
for s “nearly as large as S,” namely, s ≤ κS

2 . Further, H = [h1, ..., hk], ρ satisfy conditions (10)

(and thus – condition B of Theorem 2.1), with ρ being “nearly α”, namely, ρ ≤ 2α
erfinv( ε

2N )

erfinv( ε2 )
. As a

consequence, under the premise of the proposition, we have for s ≤ S
8 (cf (11)):

Risk∞(Bx̂reg|s,D, υ, ε) ≤ 8α
erfinv( ε

2N )

erfinv( ε2 )
+ 2s−1υ.

3.3 Condition Qs,∞(κ), case r = 2: a verifiable sufficient condition

In this section we consider the case of the representation structure B2 = (B,n1, ..., nK , ‖ · ‖2). A
verifiable sufficient condition for Qs,∞(κ) is given by the following

Proposition 3.3 Let a sensing matrix A, a representation structure B2 be given. LetN = n1 + ...+
nK , and let N × N matrix V = [V k`]Kk,`=1 (V k` are nk × n`) and m × N matrix H satisfy the
relation

B = V B +HTA. (13)
Let

ν∗(V ) = max
1≤k,`≤K

σmax(V k`), (14)

where σmax stands for the maximal singular value. Then for all s ≤ K we have:

Ls,∞(Bx) ≤ L∞(HTAx) + ν∗(V )L1(Bx), ∀x. (15)

Suppose that the matrix A, the representation structure B2, the uncertainty set U , and the parameters
D, ε are given. Let us assume that the triple H , ‖ · ‖ = L∞(·), and ρ can be augmented by an
appropriately chosen block N × N matrix V to satisfy the system of convex constraints (13),
(14). Our objective now is to synthesize the matrix H = [Hk ∈ Rm×nk ]Kk=1 which satisfies the
relationship (3) with “as good as possible” value of ρ.

Let us compute a bound on the probability of deviations of the variable ‖(Hk)TDξ‖2. Note that the
distribution of ‖(Hk)TDξ‖22 coincides with that of the random variable ζk =

∑nk
k=1 vi[k]η2i , where

η, ..., ηnk are i.i.d N (0, 1) and v[k] = [σ2
1 [k], ..., σ2

nk
[k]], σi[k] being the principal singular values

of (Hk)TD. To bound the deviation probabilities for ζk we use the bound of [6] for the deviation of
the weighted χ2:

Prob

{
nk∑
i=1

vi[k]η2i ≥ ‖v[k]‖1 +
√

2‖v[k]‖2τ

}
≤ 2 exp

(
− τ2

4‖v[k]‖22 + 4τ‖v[k]‖∞

)
.

7



When substituting ‖v[k]‖∞ = σ2
max[k], ‖v[k]‖2 ≤ σ2

max[k]
√
nk, and ‖v[k]‖1 = ‖σ[k]‖22, where

σmax[k] is the maximal singular value and ‖σ[k]‖2 is the Frobenius norm of HTD, after a simple
algebra we come to

Prob
{
‖(Dξ)TH[k]‖2 ≥ ‖σ[k]‖2 + σmax[k]

√
4 ln(2Kε−1) + 2

√
nk ln(2Kε−1)

}
≤ ε

K
.

Let µU (Hk) = max
u∈U
‖uTH[k]‖2. Then the chance constraint

Prob
{
ξ : µU (Hk) + ‖(Dξ)TH[k]‖2 ≤ ρ, 1 ≤ k ≤ K

}
≥ 1− ε,

is satisfied for

ρ ≥ max
k

[
µU (Hk) + ‖DTH[k]‖F + σmax(DTH[k])

√
4 ln(2Kε−1) + 2

√
nk ln(2Kε−1)

]
(here ‖ ·‖F stands for the Frobenius norm). In particular, in the case U = {0} (there is no nuisance),
the set Gs of admissible κ, ρ can be safely approximated by the computationally tractable convex
set

G∗s =

{
(κ, ρ) : ∃H = [Hk ∈ Rm×nk ]Kk=1, V = [V k` ∈ Rnk×n` ]Kk,`=1

B = BV +HTA, σmax(V k`) ≤ κ

s
, 1 ≤ k, ` ≤ K

ρ ≥ ‖DTH[k]‖F + σmax(DTH[k])

√
4 ln(2Kε−1) + 2

√
nk ln(2Kε−1), 1 ≤ k ≤ K

}
.

We have mentioned in Introduction that, to the best of our knowledge, the only previously proposed
verifiable sufficient condition for the validity of block `1 recovery is the Mutual Block Incoherence
condition [9]. We aim now to demonstrate that this condition is covered by Proposition 3.3.

The Mutual Block Incoherence condition deals with the case where B = I and all block norms are
‖ · ‖2-norms. Let the sensing matrix A in question be partitioned as A = [A[1], ..., A[K]], where
A[k], k = 1, ...,K, has nk columns. Let us define the mutual block-incoherence µ of A w.r.t. the
representation structure in question as follows:

µ = max
1≤k,`≤K,

k 6=`

σmax

(
C−1k AT [k]A[`]

)
, [Ck := AT [k]A[k]] (16)

provided that all matrices Ck, 1 ≤ k ≤ K, are nonsingular, otherwise µ =∞. Note that in the case
of the standard representation structure, the just defined quantity is nothing but the standard mutual
incoherence known from the Compressed Sensing literature.

We have the following observation.

Proposition 3.4 Given m × n sensing matrix A and a representation structure B2 with B = I ,
1 ≤ k ≤ K, let A = [A[1], ..., A[K]] be the corresponding partition of A.
Let µ be the mutual block-incoherence of A with respect to B2. Assuming µ <∞, we set

H =
1

1 + µ
[A[1]C−11 , A[2]C−12 , ..., A[K]C−1K ], Ck = AT [k]A[k]. (17)

Then the contrast matrix H along with the matrix V = I − HTA satisfies condition (13) (where
B = I) and condition (14) with ν∗(V ) ≤ µs

1+µ . As a result, applying Proposition 3.3, we conclude
that whenever

s <
1 + µ

2µ
, (18)

the pair (H,L∞(·)) satisfies Qs,∞(κ) with κ = µs
1+µ < 1/2.

Note that Proposition 3.4 essentially covers the results of [9] where the authors prove, under a
condition which is marginally stronger than that of (18), that an appropriate version of block-`1
recovery allows to recover exactly every block-sparse signal from the noiseless observation y = Ax.
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