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Abstract

Simultaneous recordings of many neurons embedded within a recurrently-
connected cortical network may provide concurrent views into the dynamical pro-
cesses of that network, and thus its computational function. In principle, these
dynamics might be identified by purely unsupervised, statistical means. Here,
we show that a Hidden Switching Linear Dynamical Systems (HSLDS) model—
in which multiple linear dynamical laws approximate a nonlinear and poten-
tially non-stationary dynamical process—is able to distinguish different dynami-
cal regimes within single-trial motor cortical activity associated with the prepara-
tion and initiation of hand movements. The regimes are identified without refer-
ence to behavioural or experimental epochs, but nonetheless transitions between
them correlate strongly with external events whose timing may vary from trial to
trial. The HSLDS model also performs better than recent comparable models in
predicting the firing rate of an isolated neuron based on the firing rates of others,
suggesting that it captures more of the “shared variance” of the data. Thus, the
method is able to trace the dynamical processes underlying the coordinated evo-
lution of network activity in a way that appears to reflect its computational role.

1 Introduction

We are now able to record from hundreds—and very likely soon from thousands—of neurons in
vivo. By studying the activity of these neurons in concert we may hope to gain insight not only into
the computations performed by specific neurons, but also into the computations performed by the
population as a whole. The dynamics of such collective computations can be seen in the coordinated
activity of all of the neurons within the local network; although each individual such neuron may
reflect this coordinated component only noisily. Thus, we hope to identify the computationally-
relevant network dynamics by purely statistical, unsupervised means—capturing the shared evolu-
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tion through latent-variable state-space models [1, 2, 3, 4, 5, 6, 7, 8]. The situation is similar to
that of a camera operating at the extreme of its light sensitivity. A single pixel conveys very little
information about an object in the scene, both due to thermal and shot noise and due to the ambigu-
ity of the single-channel signal. However, by looking at all of the noisy pixels simultaneously and
exploiting knowledge about the structure of natural scenes, the task of extracting the object becomes
feasible. In a similar way, noisy data from many neurons participating in a local network computa-
tion needs to be combined with the learned structure of that computation—embodied by a suitable
statistical model—to reveal the progression of the computation.

Neural spiking activity is usually analysed by averaging across multiple experimental trials, to ob-
tain a smooth estimate of the underlying firing rates [2, 3, 4, 5]. However, even under carefully
controlled experimental conditions, the animal’s behavior may vary from trial-to-trial. Reaction
time in motor or decision-making tasks for example, reflects internal processes that can last for
measurably different periods of time. In these cases traditional methods are challenging to apply,
as there is no obvious way of aligning the data from different trials. It is thus essential to develop
methods for the analysis of neural data that can account for the timecourse of a neural computation
during a single trial. Single-trial methods are also attractive for analysing specific trials in which
the subject exhibits erroneous behavior. In the case of a surprisingly long movement preparation
time or a wrong decision, it becomes possible to identify the sources of error at the neural level.
Furthermore, single-trial methods allow the use of more complex experimental paradigms where the
external stimuli can arise at variable times (e.g. variable time delays).

Here, we study a method for the unsupervised identification of the evolution of the network com-
putational state on single trials. Our approach is based on a Hidden Switching Linear Dynamical
System (HSLDS) model, in which the coordinated network influence on the population is captured
by a low-dimensional latent variable which evolves at each time step according to one of a set of
available linear dynamical laws. Similar models have a long history in tracking, speech and, indeed,
neural decoding applications [9, 10, 11] where they are variously known as Switching Linear Dy-
namical System models, Jump Markov models or processes, switching Kalman Filters or Switching
Linear Gaussian State Space models [12]. We add the prefix “Hidden” to stress that in our applica-
tion neither the switching process nor the latent dynamical variable are ever directly observed, and so
learning of the parameters of the model is entirely unsupervised—and again, learning in such mod-
els has a long history [13]. The details of the HSLDS model, inference and learning are reviewed
in Section 2. In our models, the transitions between linear dynamical laws may serve two purposes.
First, they may provide a piecewise-linear approximation to a more accurate non-linear dynamical
model [14]. Second, they may reflect genuine changes in the dynamics of the local network, perhaps
due to changes in the goals of the underlying computation under the control of signals external to
the local area. This second role leads to a computational segmentation of individual trials, as we
will see below.

We compare the performance of the HSLDS model to Gaussian Processes Factor Analysis (GPFA),
a method introduced by [8] which analyses multi-neuron data on a single-trial basis with similar mo-
tivation to our own. Instead of explicitly modeling the network computation as a dynamical process,
GPFA assumes that the computation evolves smoothly in time. In this sense, GPFA is less restrictive
and would perform better if the HSLDS provided a bad model of the real network dynamics. How-
ever GPFA assumes that the latent dimensions evolve independently, making GPFA more restrictive
than HSLDS in which the latent dimensions can be coupled. Coupling the latent dynamics intro-
duces complex interactions between the latent dimensions, which allows a richer set of behaviors.
To validate our HSLDS model against GPFA and a single LDS we will use the cross-prediction
measure introduced with GPFA [8] in which the firing rate of each neuron is predicted using only
the firing rates of the rest of the neurons; thus the metric measures how well each model captures the
shared components of the data. GPFA and cross-prediction are reviewed briefly in Section 3, which
also introduces the dataset used; and the cross-prediction performance of the models is compared in
Section 4. Having validated the HSLDS approach, we go on to study the dynamical segmentation
identified by the model in the rest of Section 4, leading to the conclusions of Section 5.
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2 Hidden Switching Linear Dynamical Systems

Our goal is to extract the structure of computational dynamics in a cortical network from the recorded
firing rates of a subset of neurons in that network. We use a Hidden Switching Linear Dynamical
Systems (HSLDS) model to capture the component of those firing rates which is shared by multiple
cells, thus exploiting the intuition that network computations should be reflected in coordinated
activity across a local population. This will yield a latent low-dimensional subspace of dynamical
states embedded within the space of noisy measured firing rates, along with a model of the dynamics
within that latent space. The dynamics of the HSLDS model combines a number of linear dynamical
systems (LDS), each of which capture linear Markovian dynamics using a first-order linear auto-
regressive (AR) rule [9, 15]. By combining multiple such rules, the HSLDS model can provide a
piecewise linear approximation to nonlinear dynamics, and also capture changes in the dynamics of
the local network driven by external influences that presumably reflect task demands. In the model
implemented here, transitions between LDS rules themselves form a Markov chain.

Let x:,t ∈ IRp×1 be the low-dimensional computational state that we wish to estimate. This latent
computational state reflects the network-level computation performed at timepoint t that gives rise
to the observed spiking activity y:,t ∈ IRq×1. Note that the dimensionality of the computational state
p is lower than the dimensionality of the recorded neural data q which corresponds to the number of
recorded neurons. The evolution of the computational state x:,t is given by

x:,t|x:,t−1, st ∼ N (Astx:,t−1,Kst) (1)

whereN (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. The linear dynamical
matrices Ast ∈ IRp×p and innovations covariance matrices Kst ∈ IRp×p are parameters of the
model and need to be learned. These matrices are indexed by a switch variable st ∈ {1, ..., S} such
that different Ast and Kst need to be learned for each of the S possible linear dynamical systems.
If the dependencies on st are removed, Eq. 1 defines a single LDS.

The switch variable st specifies which linear dynamical law guides the evolution of the latent state
x:,t at timepoint t and as such provides a piecewise approximation to the nonlinear dynamics with
which x:,t may evolve. The variable st itself is drawn from a Markov transition matrix M learned
from the data:

st ∼ Discrete(M:,st−1)

As mentioned above, the observed neural activity y:,t ∈ IRq×1 is generated by the latent dynamics
and denotes the spike counts (Gaussianised as described below) of q simultaneously recorded neu-
rons at timepoints t ∈ {1, ..., T}. The observations y:,t are related to the latent computational states
x:,t through a linear-Gaussian relationship:

y:,t|x:,t ∼ N (Cx:,t + d,R).

where the observation matrix C ∈ IRq×p, offset d ∈ IRq×1, and covariance matrix R ∈ IRq×q are
model parameters that need to be learned. We force R to be diagonal and to keep track only of the
independent noise variances. This means that the firing rates of different neurons are independent
conditioned on the latent dynamics, compelling the shared variance to live only in the latent space.
Note that different neurons can have different independent noise variances. We use a Gaussian
relationship instead of a point-process likelihood model for computational tractability. Finally, the
observation dynamics do not depend on which linear dynamical system is used (i.e., are independent
of st). A graphical model of the particular HSLDS instance we have used is shown in Figure 2.

Inference and learning in the model are performed by approximate Expectation Maximisation (EM).
Inference (or the E-step) requires finding appropriate expected sufficient statistics under the distri-
butions of the computational latent state and switch variable at each point in time given the observed
neural data p(x1:T , s1:T |y1:T ). Inference in the HSLDS is computationally intractable because of the
following exponential complexity. At the initial timepoint, s0 can take one of S discrete values. At
the next timepoint, each of the S possible latent states can again evolve according to S different lin-
ear dynamical laws, such that at timepoint t we need to keep track of St possible solutions. To avoid
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Figure 1: Graphical model of the HSLDS. The first layer corresponds to the discrete switch variable
that dictates which of the S available linear dynamical systems (LDSs) will guide the latent dynamics
shown in the second layer. The latent dynamics evolves as a linear dynamical system at timepoint t
and presumably captures relevant aspects of the computation performed at the level of the recorded
neural network. The relationship between the latent dynamics and neural data (third layer) is again
linear-Gaussian, such that each computational state is associated to a specific denoised firing pattern.
The dimensionality of the latent dynamics x is lower than that of the observations y (equivalent to
the number of recorded neurons), meaning that x extracts relevant features reflected in the shared
variance of y. Note that there are no connections between xt−1 and st, nor st and y.

this exponential scaling, we use an approximate inference algorithm based on Assumed Density Fil-
tering [16, 17, 18] and Assumed Density Smoothing [19]. The algorithm comprises a single forward
pass that estimates the filtered posterior distribution p(xt, st|y1:t) and a single backward pass that
estimates the smoothed posterior distribution p(xt, st|y1:T ). The key idea is to approximate these
posterior distributions by a simple tractable form such as a single Gaussian. The approximated dis-
tribution is then propagated through time conditioned on the new observation. The smoothing step
requires an additional simplifying assumption where p(xt+1|st, st+1, y1:T ) ≈ p(xt+1|st+1, y1:T ) as
proposed in [19]. It is also possible to use a mixture of a fixed number of Gaussians as the approx-
imating distribution, at the cost of greater computational time. We found that this approach yielded
similar results in pilot runs, and thus retained the single-Gaussian approximation.

Learning the model parameters (or the M-step) can be performed using the standard procedure of
maximizing the expected joint log-likelihood:

NX

n=1

〈log p(xn1:T , y
n
1:T )〉pold(xn|yn)

with respect to the parameters Ast , Kst , M , C, d and R, where the superscript n indexes data from
each of N different trials. In practice, the estimated individual variance of particularly low-firing
neurons was very low and likely to be incorrectly estimated. Therefore we assumed a Wishart prior
on the observation covariance matrix R, which resulted in an update rule that adds a fixed parameter
ψ ∈ IR to all of the values at the diagonal. In the analyses below ψ was fixed to the value that
gave the best cross-prediction results (see Section 3.2). Finally, the most likely state of the switch
variable s∗1:T = arg maxs1:T p(s1:T |y1:T ) was estimated using the standard Viterbi algorithm [20],
which ensures that the most likely switch variable path is in fact possible in terms of the transitions
allowed by M .

3 Model Comparison and Experimental Data

3.1 Gaussian Process Factor Analysis

Below, we compare the performance of the HSLDS model to Gaussian Process Factor Analysis
(GPFA), another method for estimating the functional computation of a set of neurons. GPFA is an
extension of Factor Analysis that leverages time-label information, introduced in [8]. In this model,
the latent dynamics evolve as a Gaussian Process (GP), with a smooth correlation structure between
the latent states at different points in time. This combination of FA and the GP prior work together
to identify smooth low-dimensional latent trajectories.
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