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Abstract

Off-policy learning, the ability for an agent to learn abouta policy other than the
one it is following, is a key element of Reinforcement Learning, and in recent
years there has been much work on developing Temporal Different (TD) algo-
rithms that are guaranteed to converge under off-policy sampling. It has remained
an open question, however, whether anything can be said a priori about thequality
of the TD solution when off-policy sampling is employed withfunction approx-
imation. In general the answer is no: for arbitrary off-policy sampling the error
of the TD solution can be unboundedly large, even when the approximator can
represent the true value function well. In this paper we propose a novel approach
to address this problem: we show that by considering a certain convex subsetof
off-policy distributions we can indeed provide guaranteesas to the solution quality
similar to the on-policy case. Furthermore, we show that we can efficiently project
on to this convex set using only samples generated from the system. The end re-
sult is a novel TD algorithm that has approximation guarantees even in the case of
off-policy sampling and which empirically outperforms existing TD methods.

1 Introduction
In temporal prediction tasks, Temporal Difference (TD) learning provides a method for learning
long-term expected rewards (the “value function”) using only trajectories from the system. The
algorithm is ubiquitous in Reinforcement Learning, and there has been a great deal of work studying
the convergence properties of the algorithm. It is well known that for a tabular value function
representation, TD converges to the true value function [3,4]. For linear function approximation
with on-policy sampling (i.e., when the states are drawn from the stationary distribution of the policy
we are trying to evaluate), the algorithm converges to a well-known fixed point that is guaranteed
to be close to the optimal projection of the true value function [17]. When states are sampled off-
policy, standard TD may diverge when using linear function approximation [1], and this has led in
recent years to a number of modified TD algorithms that are guaranteed to convergence even in the
presence of off-policy sampling [16, 15, 9, 10].

Of equal importance, however, is the actualquality of the TD solution under off-policy sampling.
Previous work, as well as an example we present in this paper,show that in general little can be said
about this question: the solution found by TD can be arbitrarily poor in the case of off-policy sam-
pling, even when the true value function is well-approximated by a linear basis. Pursing a slightly
different approach, other recent work has looked at providing problem dependent bounds, which use
problem-specific matrices to obtain tighter bounds than previous approaches [19]; these bounds can
apply to the off-policy setting, but depend on problem data,and will still fail to provide a reasonable
bound in the cases mentioned above where the off-policy approximation is arbitrarily poor. Indeed,
a long-standing open question in Reinforcement Learning iswhether any a priori guarantees can be
made about the solution quality for off-policy methods using function approximation.

In this paper we propose a novel approach that addresses thisquestion: we present an algorithm that
looks for asubsetof off-policy sampling distributions where a certain relaxed contraction property
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holds; for distributions in this set, we show that it is indeed possible to obtain error bounds on the
solution quality similar to those for the on-policy case. Furthermore, we show that this set of feasible
off-policy sampling distributions is convex, representable via a linear matrix inequality (LMI), and
we demonstrate how the set can be approximated and projectedonto efficiently in the finite sample
setting. The resulting method, which we refer to as TD with distribution optimization (TD-DO),
is thus able to guarantee a good approximation to the best possible projected value function, even
for off-policy sampling. In simulations we show that the algorithm can improve significantly over
standard off-policy TD.

2 Preliminaries and Background

A Markov chain is a tuple,(S, P,R, γ), whereS is a set of states,P : S × S → R+ is a transition
probability function,R : S → R is a reward function, andγ ∈ [0, 1) is a discount factor. For
simplicity of presentation we will assume the state space iscountable, and so can be indexed by
the setS = {1, . . . , n}, which allows us to use matrix rather than operator notation. The value
functionfor a Markov chain,V : S → R maps states to their long term discounted sum of rewards,
and is defined asV (s) = E [

∑∞
t=0 γtR(st)|s0 = s]. The value function may also be expressed via

Bellman’s equation (in vector form)
V = R + γPV (1)

whereR, V ∈ R
n represent vectors of all rewards and values respectively, and P ∈ R

n×n is a
matrix of probability transitionsPij = P (s′ = j|s = i).

In linear function approximation, the value function is approximated as a linear combination of
some features describing the state:V (s) ≈ wT φ(s), wherew ∈ R

k is a vector of parameters, and
φ : S → R

k is a function mapping states tok-dimensional feature vectors; or, again using vector
notation,V ≈ Φw, whereΦ ∈ R

n×k is a matrix of all feature vectors. The TD solution is a fixed
point of the Bellman operator followed by a projection, i.e.,

Φw⋆
D = ΠD(R + γPΦw⋆

D) (2)

whereΠD = ΦT (ΦT DΦ)−1ΦT D is a projection matrix weighted by the diagonal matrixD ∈
R

n×n. Rearranging terms gives the analytical solution

w⋆
D =

(

ΦT D(Φ − γPΦ)
)−1

ΦT DR. (3)

Although we cannot expect to form this solution exactly whenP is unknown and too large to repre-
sent, we can approximate the solution via stochastic iteration (leading to the original TD algorithm),
or via the least-squares TD (LSTD) algorithm, which forms the matrices

ŵD = Â−1b̂, Â =
1

m

m
∑

i=1

φ(s(i))
(

φ(s(i)) − γφ(s′
(i)

)
)

, b̂ =
1

m

m
∑

i=1

φ(s(i))r(i) (4)

given a sequence of states, rewards, and next states{s(i), r(i), s′
(i)
}m

i=1 wheres(i) ∼ D. WhenD
is not the stationary distribution of the Markov chain (i.e., we are employing off-policy sampling),
then the original TD algorithm may diverge (LSTD will still be able to compute the TD fixed point
in this case, but has a greater computational complexity ofO(k2)). Thus, there has been a great deal
of work on developingO(k) algorithms that are guaranteed to converge to the LSTD fixed point
even in the case of off-policy sampling [16, 15].

We note that the above formulation avoids any explicit mention of a Markov Decision Process
(MDP) or actual policies: rather, we just have tuples of the form {s, r, s′} wheres is drawn from
an arbitrary distribution buts′ still follows the “policy” we are trying to evaluate. This isa standard
formulation for off-policy learning (see e.g. [16, Section2]); briefly, the standard way to reach this
setting from the typical notion of off-policy learning (acting according to one policy in an MDP, but
evaluating another) is to act according to some original policy in an MDP, and then subsample only
those actions that are immediately consistent with the policy of interest. We use the above nota-
tion as it avoids the need for any explicit notation of actions and still captures the off-policy setting
completely.

2.1 Error bounds for the TD fixed point

Of course, in addition to the issue of convergence, there is the question as to whether we can say any-
thing about the quality of the approximation at this fixed point. For the case of on-policy sampling,
the answer here is an affirmative one, as formalized in the following theorem.
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Figure 1: Counter example for off-policy TD learning: (left) the Markov chain considered for the
counterexample; (right) the error of the TD estimate for different off-policy distributions (plotted on
a log scale), along with the error of the optimal approximation.

Theorem 1. (Tsitsiklis and Van Roy [17], Lemma 6) Letw⋆
D be the unique solution toΦw⋆

D =
ΠD(R + γPΦw⋆

D) whereD is the stationary distribution ofP . Then

‖Φw⋆
D − V ‖D ≤

1

1 − γ
‖ΠDV − V ‖D. (5)

Thus, for on-policy sampling with linear function approximation, not only does TD converge to its
fixed point, but we can also bound the error of its approximation relative to‖ΠDV − V ‖D, the
lowest possible approximation error for the class of function approximators.1

Since this theorem plays an integral role in the remainder ofthis paper, we want to briefly give the
intuition of its proof. A fundamental property of Markov chains [17, Lemma 1] is that transition
matrixP is non-expansive in theD norm whenD is the stationary distribution

‖Px‖D ≤ ‖x‖D, ∀x. (6)

From this it can be shown that the Bellman operator is aγ-contraction in theD norm and Theorem 1
follows. WhenD is not the stationary distribution of the Markov chain, then (6) need not hold, and
it remains to be seen what, if anything, can be said a priori about the TD fixed point in this situation.

3 An off-policy counterexample

Here we present a simple counter-example which shows, for general off-policy sampling, that the
TD fixed point can be an arbitrarily poor approximator of the value function, even if the chosen
bases can represent the true value function with low error. The same intuition has been presented
previously [11]. though we here present a concrete numerical example for illustration.
Example 1. Consider the two-state Markov chain shown in Figure 1, with transition probability
matrix P = (1/2)11T , discount factorγ = 0.99, and value functionV = [1 1.05]T (with R =
(I − γP )V ). Then for anyǫ > 0 andC > 0, there exists an off-policy distributionD such that
using basesΦ = [1 1.05 + ǫ]T gives

‖ΠDV − V ‖ ≤ ǫ, and ‖Φw⋆
D − V ‖ ≥ C. (7)

Proof. (Sketch) The fact that‖ΠDV − V ‖ ≤ ǫ is obvious from the choice of basis. To show that
the TD error can be unboundedly large, letD = diag(p, 1 − p); then, after some simplification, the
TD solution is given analytically by

w⋆
D =

−2961 + 4141p − 2820ǫ + 2820pǫ

−2961 + 4141p − 45240ǫ + 84840pǫ − 40400ǫ2 + 40400pǫ2
(8)

which is infinite, (1/w = 0), when

p =
2961 + 45240ǫ + 40400ǫ2

4141 + 84840ǫ + 40400ǫ2
. (9)

Since this solution is in(0, 1) for all epsilon, by choosingp close to this value, we can makew⋆
D

arbitrarily large, which in turn makes the error of the TD estimate arbitrarily large.

1The approximation factor can be sharpened to1√
1−γ2

in some settings [18], though the analysis does not

carry over to our off-policy case, so we present here the simpler version.
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Figure 1 shows a plot of‖Φw⋆ − V ‖2 for the example above withǫ = 0.001, varyingp from 0 to
1. Forp ≈ 0.715 the error of the TD solution approaches infinity; the essential problem here is that
whenD is not the stationary distribution ofP , A = ΦT D(Φ − γPΦ) can become close to zero (or
for the matrix case, one of its eigenvalues can become zero),and the TD value function estimate can
grow unboundedly large. Thus, we argue that simple convergence for an off-policy algorithm is not
a sufficient criterion for a good learning system, since evenfor a convergent algorithm the quality of
the actual solution could be arbitrarily poor.

4 A convex characterization of valid off-policy distributions

Although it may seem as though the above example would imply that very little could be said about
the quality of the TD fixed point under off-policy sampling, in this section we show that by imposing
additional constraints on the sampling distribution, we can find a convex family of distributions for
which it is possible to make guarantees.

To motivate the approach, we again note that error bounds forthe on-policy TD algorithm follow
from the Markov chain property that‖Px‖D ≤ ‖x‖D for all x whenD is the stationary distribu-
tion. However, finding aD that satisfies this condition is no easier than computing thestationary
distribution directly and thus is not a feasible approach. Instead, we consider a relaxed contraction
property: that the transition matrixP followed by a projection onto the bases will be non-expansive
for any function already in the span ofΦ. Formally, we want to consider distributionsD for which

‖ΠDPΦw‖D ≤ ‖Φw‖D (10)

for anyw ∈ R
k. This defines aconvexset of distributions, since

‖ΠDPΦw‖2
D ≤ ‖Φw‖2

D

⇔ wT ΦT PT DΦ(ΦT DΦ)−1ΦT DΦ(ΦT DΦ)−1ΦDPΦT w ≤ wT ΦT DΦw

⇔ wT
(

ΦT PT DΦ(ΦT DΦ)−1ΦDPΦT − ΦT DΦ
)

w ≤ 0.

(11)

This holds for allw if and only if2

ΦT PT DΦ(ΦT DΦ)−1ΦDPΦT − ΦT DΦ � 0 (12)

which in turn holds if and only if3

F ≡

[

ΦT DΦ ΦT DPΦ
ΦT PT DΦ ΦT DΦ

]

� 0 (13)

This is a matrix inequality (LMI) inD, and thus describes a convex set. Although the distributionD
is too high-dimensional to optimize directly, analogous toLSTD, theF matrix defined aboveis of a
representable size (2k × 2k), and can be approximated from samples. We will return to this point in
the subsequent section, and for now will continue to use the notation of the true distributionD for
simplicity. The chief theoretical result of this section isthat if we restrict our attention to off-policy
distributions within this convex set, we can prove non-trivial bounds about the approximation error
of the TD fixed point.
Theorem 2. Letw⋆ be the unique solution toΦw⋆ = ΠD(R+γPΦw⋆) whereD is any distribution

satisfying(13). Further, letDµ be the stationary distribution ofP , and letD̄ ≡ D−1/2D
1/2
µ Then4

‖Φw⋆
D − V ‖D ≤

1 + γκ(D̄)

1 − γ
‖ΠDV − V ‖D. (14)

The bound here is of a similar form to the previously stated bound for on-policy TD, it bounds
the error of the TD solution relative to the error of the best possible approximation, except for
the additionalγκ(D̄) term, which measures how much the chosen distribution deviates from the
stationary distribution. WhenD = Dµ, κ(D̄) = 1, so we recover the original bound up to a
constant factor. Even though the bound does include this term that depends on the distance from
the stationary distribution, no such bound is possible forD that do not satisfy the convex constraint
(13), as illustrated by the previous counter-example.

2A � 0 (A � 0) denotes thatA is negative (positive) semidefinite.
3Using the Schur complement property that

»

A B
BT C

–

� 0 ⇔ BT AB − C � 0 [2, pg 650-651].

4κ(A) denotes the condition number ofA, the ratio of the singular valuesκ(A) = σmax(A)/σmin(A).
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Figure 2: Counter example from Figure 1 shown with the set of all valid distributions for which
F � 0. Restricting the solution to this region avoids the possibility of the high error solution.

Proof. (of Theorem 2) By the triangle inequality and the definition of the TD fixed point,

‖Φw⋆
D − V ‖D ≤ ‖Φw⋆

D − ΠDV ‖D + ‖ΠDV − V ‖D

= ‖ΠD(R + γPΦw⋆
D) − ΠD(R + γPV )‖D + ‖ΠDV − V ‖D

= γ‖ΠDPΦw⋆
D − ΠDPV ‖D + ‖ΠDV − V ‖D

≤ γ‖ΠDPΦw⋆
D − ΠDPΠDV ‖D + γ‖ΠDPΠDV − ΠDPV ‖D + ‖ΠDV − V ‖D.

(15)

SinceΠDV = Φw̄ for somew̄, we can use the definition of our contraction‖ΠDPΦw‖D ≤ ‖Φw‖D

to bound the first term as

‖ΠDPΦw⋆
D − ΠDPΠDV ‖D ≤ ‖Φw⋆

D − ΠDV ‖D ≤ ‖Φw⋆
D − V ‖D. (16)

Similarly, the second term in (15) can be bounded as

‖ΠDPΠDV − ΠDPV ‖D ≤ ‖PΠDV − PV ‖D ≤ ‖P‖D‖ΠDV − V ‖D (17)

where‖P‖D denotes the matrix norm‖A‖D ≡ max‖x‖D≤1 ‖Ax‖D. Substituting these bounds
back into (15) gives

(1 − γ)‖Φw⋆
D − V ‖D ≤ (1 + γ‖P‖D)‖ΠDV − V ‖D, (18)

so all the remains is to show that‖P‖D ≤ κ(D̄). To show this, first note that‖P‖Dµ
= 1, since

max
‖x‖Dµ≤1

‖Px‖Dµ
≤ max

‖x‖Dµ≤1
‖x‖Dµ

= 1, (19)

and for any nonsingularD,

‖P‖D = max
‖x‖D≤1

‖Px‖D = max
‖y‖2≤1

√

yT D−1/2PT DPD−1/2y = ‖D1/2PD−1/2‖2. (20)

Finally, sinceDµ andD are both diagonal (and thus commute),

‖D1/2PD−1/2‖2 = ‖D−1/2
µ D1/2D1/2

µ PD−1/2
µ D−1/2D1/2

µ ‖2

≤ ‖D−1/2
µ D1/2‖2‖D

1/2
µ PD−1/2

µ ‖2‖D
−1/2D1/2

µ ‖2

= ‖D−1/2
µ D1/2‖2‖D

−1/2D1/2
µ ‖2 = κ(D̄)

The final form of the bound can be quite loose of, course, as many of the steps involved in the proof
used substantial approximations and discarded problem specific data (such as the actual‖ΠDP‖D

term in favor of the genericκ(D̄) term, for instance). This is in constrast to the previously mentioned
work of Yu and Bertsekas [19] that uses these and similar terms to obtain much tigher, but data
dependent, bounds. Indeed, applying a theorem from this work we can arrive as a slight improvement
of the bound above [13], but the focus here is just on the general form and possibility of the bound.

Returning to the counter-example from the previous section, we can visualize the feasible region
for which F � 0, shown as the shaded portion in Figure 2, and so constrainingthe solution to
this feasible region avoids the possibility of the high error solution. Moreover, in this example the
optimal TD error occurs exactly at the point whereλmin(F ) = 0, so that projecting an off-policy
distribution onto this set will give an optimal solution forinitially infeasible distributions.
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4.1 Estimation from samples

Returning to the issue of optimizing this distribution onlyusing samples from the system, we note
that analogous to LSTD, for samples{s(i), r(i), s′

(i)
}m

i=1

F̂ =
1

m

m
∑

i=1

[

φ(s(i))φ(s(i))T φ(s(i))φ(s′
(i)

)T

φ(s′
(i)

)φ(s(i))T φ(s(i))φ(s(i))T

]

≡
1

m

m
∑

i=1

F̂i (21)

will be an unbiased estimate of the LMI matrixF (for a diagonal matrixD given the our sampling
distribution overs(i)). Placing a weightdi on each sample, we could optimize the sum̂F (d) =
∑m

i=1 diF̂i and obtain a tractable optimization problem. However, optimizing these weights freely is
not permissible, since this procedure allows us to choosedi 6= dj even ifs(i) = s(j), which violates
the weights in the original LMI. However, if we additionallyrequire thats(i) = s(j) ⇒ di = dj

(or more appropriately for continuous features and states,for example that‖di − dj‖ → 0 as
‖φ(s(i))−φ(s(j))‖ → 0 according to some norm) then we are free to optimize over these empirical
distribution weights. In practice, we want to constrain this distribution in a manner commensurate
with the complexity of the feature space and the number of samples. However, determining the best
such distributions to use in practice remains an open problem for future work in this area.

Finally, since many empirical distributions satisfŷF (d) � 0, we propose to “project” the empirical
distribution onto this set by minimizing the KL divergence between the observed and optimized
distributions, subject to the constraint thatF̂ (d) � 0. Since this constraint is guaranteed to hold at
the stationary distribution, the intuition here is that by moving closer to this set, we will likely obtain
a better solution. Formally, the final optimization problem, which we refer to as the TD-DO method
(Temporal Difference Distribution Optimization), is given by

min
d

m
∑

i=1

−p̂i log di s.t. , 1T d = 0, F̂ (d) � 0, d ∈ C. (22)

whereC is some convex set that respects the metric constraints described above. This is a convex op-
timization problem ind, and thus can be solved efficiently, though off-the-shelf solvers can perform
quite poorly, especially for large dimensionm.

4.2 Efficient Optimization

Here we present a first-order optimization method based on solving the dual of (22). By properly
exploiting the decomposability of the objective and low-rank structure of the dual problem, we
develop an iterative optimization method where each gradient step can be computed very efficiently.
The presentation here is necessarily brief due to space constraints, but we also include a longer
description and an implementation of the method in the supplementary material. For simplicity we
present the algorithm ignoring the constraint setC, though we discuss possible additonal constraints
briefly in supplementary material.

We begin by forming the Lagrangian of (22), introducing Lagrange multipliersZ ∈ R
2k×2k for the

constraintF̂ (d) � 0 andν ∈ R for the constraint1T d = 1. This leads to the dual optimization
problem

max
Z�0,ν

min
d

{

−
m

∑

i=1

p̂i log di − tr(ZT F̂ (d)) + ν(1T d − 1)

}

. (23)

TreatingZ as fixed, we maximize overν and minimize overd in (23) using an equality-constrained,
feasible start Newton method [2, pg 528]. Since the objective is separable over thedi’s the Hessian
matrix is diagonal, and the Newton step can be computed inO(m) time; furthermore, since we
solve this subproblem for each update of dual variablesZ, we can warm-start Newton’s method
from previous solutions, leading to a number of Newton stepsthat is virtually constant in practice.

Considering now the maximization overZ, the gradient of

g(Z) ≡

{

∑

i

−p̂i log d⋆
i (Z) − trZT F̂ (d⋆(Z)) + ν⋆(Z)(1T d⋆(Z) − 1)

}

(24)
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Figure 3: Average approximation error of the TD methods, using different numbers of bases func-
tions, for the random Markov chain (left) and diffusion chain (right).
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Figure 4: Average approximation error, using off-policy distributions closer or further from the
stationary distribution (see text) for the random Markov chain (left) and diffusion chain (right).
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Figure 5: Average approximation error for TD methods computed via sampling, for different num-
bers of samples, for random Markov chain (left) and diffusion chain (right).

is given simply by∇Zg(Z) = −F̂ (d⋆(Z)). We then exploit the fact that we expectZ to typically be
low-rank: by the KKT conditions for a semidefinite program̂F (d) andZ will have complementary
ranks, and since we expect̂F (d) to be nearly full rank at the solution, we factorZ = Y Y T for
Y ∈ R

k×p with p ≪ k. Although this is now a non-convex problem, local optimization of this
objective is still guaranteed to give a global solution to the original semidefinite problem, provided
we choose the rank ofY to be sufficient to represent the optimal solution [5]. The gradient of this
transformed problem is∇Zg(Y Y T ) = −2F̂ (d)Y , which can be computed in timeO(mkp) since
eachF̂i term is a low-rank matrix, and we optimize the dual objectivevia an off-the-shelf LBFGS
solver [12, 14]. Though it is difficult to boundp aprirori, we can check after the solution that our
chosen value was sufficient for the global solution, and we have found that very low values (p = 1
or p = 2) were sufficient in our experiments.

5 Experiments

Here we present simple simulation experiments illustrating our proposed approach; while the evalua-
tion is of course small scale, the results highlight the potential of TD-DO to improve TD algorithms
both practically as well as theoretically. Since the benefits of the method are clearest in terms of
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Figure 6: (Left) Effect of the number of clusters for sample-based learning on diffusion chain,
(Right) performance of algorithm on diffusion chain versusnumber of LBFGS iterations

the mean performance over many different environments we focus on randomly generated Markov
chains of two types: a random chain and a diffusion process chain.5

Figure 3 shows the average approximation error of the different algorithms with differing numbers
of basis function, over 1000 domains. In this and all experiments other than those evaluating the
effect of sampling, we use the fullΦ andP matrices to compute the convex set, so that we are
evaluating the performance of the approach in the limit of large numbers of samples. We evaluate
the approximation error‖V̂ − V ‖D whereD is the off-policy sampling distribution (so as to be
as favorable as possible to off-policy TD). In all cases the TD-DO algorithm improves upon the
off-policy TD, though the degree of improvement can vary from minor to quite significant.

Figure 4 shows a similar result for varying the closeness of the sampling distribution to the
stationary distribution; in our experiments, the off-policy distribution is sampled according to
D ∼ Dir(1 + Cµµ) whereµ denotes the stationary distribution. As expected, the off-policy ap-
proaches perform similarly for largerCµ (approaching the stationary distribution), with TD-DO
having a clear advantage when the off-policy distribution is far from the stationary distribution.

In Figure 5 we consider the effect of sampling on the algorithms. For these experiments we employ a
simple clustering method to compute a distribution over statesd that respects the fact thatφ(s(i)) =
φ(s(j)) ⇒ di = dj : we group the sampled states intok clusters viak-means clustering on the
feature vectors, and optimize over the reduced distribution d ∈ R

k. In Figure 6 we vary the number
of clustersk for the sampled diffusion chain, showing that the algorithmis robust to a large number
of different distributional representations; we also showthe performance of our method varying the
number of LBFGS iterations, illustrating that performancegenerally improves monotonically.

6 Conclusion

The fundamental idea we have presented in this paper is that by considering a convex subset of
off-policy distributions (and one which can be computed efficiently from samples), we can provide
performance guarantees for the TD fixed point. While we have focused on presenting error bounds
for the analytical (infinite sample) TD fixed point, a huge swath of problems in TD learning arise
from this same off-policy issue: the convergence of the original TD method, the ability to find the
ℓ1 regularized TD fixed point [6], the on-policy requirement ofthe finite sample analysis of LSTD
[8], and the convergence of TD-based policy iteration algorithms [7]. Although left for future work,
we suspect that the same techniques we present here can also be extending to these other cases,
potentially providing a wide range of analogous results that still apply under off-policy sampling.

Acknowledgements.We thank the reviewers for helpful comments and Bruno Scherrer for pointing
out a potential improvement to the error bound. J. Zico Kolter is supported by an NSF CI Fellowship.

5Experimental details: For the random Markov Chain rows ofP are drawn IID from a Dirichlet distribution,
and the reward and bases are random normal, with|S| = 11. For the diffusion-based chain, we sample
|S| = 100 points from a 2D unit cubexi ∈ [0, 1]2 and setp(s′ = j|s = i) ∝ exp(−‖xi − xj‖2/(2σ2))
for bandwidthσ = 0.4. Similarly, rewards are sampled from a zero-mean Gaussian Processwith covariance
Kij = exp(−‖xi − xj‖2/(2σ2)), and for basis vectors we use the principle eigenvectors ofCov(V ) =
E[(I − γP )RRT (I − γP )T ] = (I − γP )K(I − γP )T , which are the optimal bases for representing value
functions (in expectation). Some details of the domains are omitted due to space constraints, but MATLAB
code for all the experiments is included in the supplementary files.
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