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Abstract

Off-policy learning, the ability for an agent to learn abaupolicy other than the
one it is following, is a key element of Reinforcement Leagjiand in recent
years there has been much work on developing Temporal BiftgfTD) algo-
rithms that are guaranteed to converge under off-policypdiaign It has remained
an open question, however, whether anything can be saidgiiout thequality
of the TD solution when off-policy sampling is employed witinction approx-
imation. In general the answer is no: for arbitrary off-pglsampling the error
of the TD solution can be unboundedly large, even when theoappator can
represent the true value function well. In this paper we psepa novel approach
to address this problem: we show that by considering a cectaivex subsetf
off-policy distributions we can indeed provide guaranteto the solution quality
similar to the on-policy case. Furthermore, we show thataveefficiently project
on to this convex set using only samples generated from thtersy The end re-
sult is a novel TD algorithm that has approximation guar@sitven in the case of
off-policy sampling and which empirically outperforms sting TD methods.

1 Introduction

In temporal prediction tasks, Temporal Difference (TD)rieag provides a method for learning
long-term expected rewards (the “value function”) usindydmajectories from the system. The
algorithm is ubiquitous in Reinforcement Learning, andéheas been a great deal of work studying
the convergence properties of the algorithm. It is well knavat for a tabular value function
representation, TD converges to the true value functiod]3For linear function approximation
with on-policy sampling (i.e., when the states are drawmftbe stationary distribution of the policy
we are trying to evaluate), the algorithm converges to a-wsdwn fixed point that is guaranteed
to be close to the optimal projection of the true value fure{il7]. When states are sampled off-
policy, standard TD may diverge when using linear functippraximation [1], and this has led in
recent years to a number of modified TD algorithms that areateed to convergence even in the
presence of off-policy sampling [16, 15, 9, 10].

Of equal importance, however, is the actgahlity of the TD solution under off-policy sampling.
Previous work, as well as an example we present in this paipew that in general little can be said
about this question: the solution found by TD can be arhiyraoor in the case of off-policy sam-
pling, even when the true value function is well-approxietaby a linear basis. Pursing a slightly
different approach, other recent work has looked at pragigiroblem dependent bounds, which use
problem-specific matrices to obtain tighter bounds thawmipus approaches [19]; these bounds can
apply to the off-policy setting, but depend on problem dated will still fail to provide a reasonable
bound in the cases mentioned above where the off-policyoxppation is arbitrarily poor. Indeed,

a long-standing open question in Reinforcement Learninghisther any a priori guarantees can be
made about the solution quality for off-policy methods gsinnction approximation.

In this paper we propose a novel approach that addressegiggtion: we present an algorithm that
looks for asubsetf off-policy sampling distributions where a certain redaxcontraction property



holds; for distributions in this set, we show that it is indgmssible to obtain error bounds on the
solution quality similar to those for the on-policy casertRarmore, we show that this set of feasible
off-policy sampling distributions is convex, represemtalia a linear matrix inequality (LMI), and
we demonstrate how the set can be approximated and projeatecfficiently in the finite sample
setting. The resulting method, which we refer to as TD witktriution optimization (TD-DO),
is thus able to guarantee a good approximation to the besthp@projected value function, even
for off-policy sampling. In simulations we show that the @ighm can improve significantly over
standard off-policy TD.

2 Preliminaries and Background

A Markov chain is a tuple(S, P, R, v), whereS is a set of states} : S x S — R, is a transition
probability function,R : S — R is a reward function, ang € [0,1) is a discount factor. For
simplicity of presentation we will assume the state spaaisitable, and so can be indexed by
the setS = {1,...,n}, which allows us to use matrix rather than operator notatidhe value
functionfor a Markov chain} : S — R maps states to their long term discounted sum of rewards,
and is defined a¥ (s) = E [>_ .-, 7 R(s:)|so = s]. The value function may also be expressed via
Bellman’s equation (in vector form)
V=R+~yPV 1)

where R,V € R” represent vectors of all rewards and values respectivaty,fac R"*" is a
matrix of probability transition®;; = P(s’ = j|s = i).
In linear function approximation, the value function is egpmated as a linear combination of
some features describing the stat&(s) ~ w’ ¢(s), wherew € R* is a vector of parameters, and
¢ : S — R¥ is a function mapping states tedimensional feature vectors; or, again using vector
notation,V ~ ®w, where® ¢ R™** is a matrix of all feature vectors. The TD solution is a fixed
point of the Bellman operator followed by a projection,,i.e.

Qwy =Ip(R + vPduwy) )

wherellp = &7 (7 D®)~1®T D is a projection matrix weighted by the diagonal matfix
R™*™ Rearranging terms gives the analytical solution

wh = (@7 D(® — yPD)) ' T DR. 3)

Although we cannot expect to form this solution exactly wiieis unknown and too large to repre-
sent, we can approximate the solution via stochastic iteréeading to the original TD algorithm),
or via the least-squares TD (LSTD) algorithm, which forms thatrices

m

A | , : i I A G
p=A", A=m;qs(s(“)(¢<s“)>—w¢<s’“>), b= o @

=5

given a sequence of states, rewards, and next statésr(®), s'’1m | wheres(®) ~ D. WhenD

is not the stationary distribution of the Markov chain (ix@e are employing off-policy sampling),
then the original TD algorithm may diverge (LSTD will stiletable to compute the TD fixed point
in this case, but has a greater computational complexi€y(éf)). Thus, there has been a great deal
of work on developing)D (k) algorithms that are guaranteed to converge to the LSTD fixaalt p
even in the case of off-policy sampling [16, 15].

We note that the above formulation avoids any explicit mmnf a Markov Decision Process
(MDP) or actual policies: rather, we just have tuples of therf{s, r, s’} wheres is drawn from
an arbitrary distribution but’ still follows the “policy” we are trying to evaluate. This &sstandard
formulation for off-policy learning (see e.g. [16, Sectid}); briefly, the standard way to reach this
setting from the typical notion of off-policy learning (& according to one policy in an MDP, but
evaluating another) is to act according to some originakpah an MDP, and then subsample only
those actions that are immediately consistent with thecpa interest. We use the above nota-
tion as it avoids the need for any explicit notation of acsi@md still captures the off-policy setting
completely.

2.1 Error bounds for the TD fixed point

Of course, in addition to the issue of convergence, thefreigjtiestion as to whether we can say any-
thing about the quality of the approximation at this fixedoFor the case of on-policy sampling,
the answer here is an affirmative one, as formalized in theviidig theorem.
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Figure 1. Counter example for off-policy TD learning: (Jefihe Markov chain considered for the
counterexample; (right) the error of the TD estimate fofedént off-policy distributions (plotted on
a log scale), along with the error of the optimal approximati

Theorem 1. (Tsitsiklis and Van Roy [17], Lemma 6) Lef;, be the unique solution t@éw}, =
IIp(R 4+ vPPw},) whereD is the stationary distribution af. Then

N 1
[Pwp — Vb < EHHDV_VHD (5)

Thus, for on-policy sampling with linear function approxition, not only does TD converge to its
fixed point, but we can also bound the error of its approxiomatelative to||IIp,V — V||p, the
lowest possible approximation error for the class of fumectipproximators.

Since this theorem plays an integral role in the remaindéhisfpaper, we want to briefly give the
intuition of its proof. A fundamental property of Markov dha [17, Lemma 1] is that transition
matrix P is non-expansive in th® norm whenbD is the stationary distribution

|Pz|p < |lz[p, V. (6)

From this it can be shown that the Bellman operatorysantraction in theD norm and Theorem 1
follows. WhenD is not the stationary distribution of the Markov chain, then (6¢d&ot hold, and
it remains to be seen what, if anything, can be said a pri@iaithe TD fixed point in this situation.

3 An off-policy counterexample

Here we present a simple counter-example which shows, fogrgéoff-policy sampling, that the
TD fixed point can be an arbitrarily poor approximator of tl@ue function, even if the chosen
bases can represent the true value function with low errbe Same intuition has been presented
previously [11]. though we here present a concrete numexieanple for illustration.

Example 1. Consider the two-state Markov chain shown in Figure 1, wigmsition probability
matrix P = (1/2)117, discount factory = 0.99, and value functio” = [1 1.05]7 (with R =
(I —~P)V'). Then for anye > 0 andC' > 0, there exists an off-policy distributio® such that
using base® = [1 1.05 + |7 gives

IIpV — V| <e and |[ouh, — V| > C. @)

Proof. (Sketch) The fact thaflI,V — V|| < ¢ is obvious from the choice of basis. To show that
the TD error can be unboundedly large, I2t= diag(p, 1 — p); then, after some simplification, the
TD solution is given analytically by

—2961 4 4141p — 2820¢ + 2820pe
—2961 4 4141p — 45240¢ + 84840pe — 40400€2 4 40400pe?
which is infinite, ( /w = 0), when
b 2961 + 45240¢ + 40400¢> ©)
4141 + 84840¢ + 40400€2

Since this solution is ir{0, 1) for all epsilon, by choosing close to this value, we can make,
arbitrarily large, which in turn makes the error of the TDirgite arbitrarily large. |

®)

wp =

1The approximation factor can be sharpenee\l?lé:2 in some settings [18], though the analysis does not
-
carry over to our off-policy case, so we present here the simplsiorer



Figure 1 shows a plot df®w* — V||, for the example above with= 0.001, varyingp from 0 to

1. Forp = 0.715 the error of the TD solution approaches infinity; the esséptioblem here is that
when D is not the stationary distribution @, A = ®7 D(® — yP®) can become close to zero (or
for the matrix case, one of its eigenvalues can become zrd)the TD value function estimate can
grow unboundedly large. Thus, we argue that simple connergéor an off-policy algorithm is not
a sufficient criterion for a good learning system, since doea convergent algorithm the quality of
the actual solution could be arbitrarily poor.

4 A convex characterization of valid off-policy distributions

Although it may seem as though the above example would intati/very little could be said about
the quality of the TD fixed point under off-policy sampling,this section we show that by imposing
additional constraints on the sampling distribution, we fiad a convex family of distributions for
which itis possible to make guarantees.

To motivate the approach, we again note that error boundthéon-policy TD algorithm follow
from the Markov chain property thdtPz||p < ||z||p for all z when D is the stationary distribu-
tion. However, finding a that satisfies this condition is no easier than computingsthtonary
distribution directly and thus is not a feasible approacistdad, we consider a relaxed contraction
property: that the transition matrik followed by a projection onto the bases will be non-expasnsiv
for any function already in the span ®f Formally, we want to consider distributiodis for which

Ip Pow|p < [[@w]p (10)
for anyw € R¥. This defines @onvexset of distributions, since
T POw|3, < [[@wl]?,
= w'®TPTDO(@TD®) 1T DO(®T DO) '@ DPITw < w T DOw (11)
< w' (@"PTDR(®"DP) ' ®DPE" — T DP) w < 0.
This holds for alkw if and only if?
o PTDO(®" D®) ' ¢DPOT — T DD <0 (12)
which in turn holds if and only
_ | eo'D® @TDP®
~— | ®TPTD® OTDO

This is a matrix inequality (LMI) inD, and thus describes a convex set. Although the distribufion
is too high-dimensional to optimize directly, analogou& 8¥D, the F' matrix defined aboves of a
representable siz€K x 2k), and can be approximated from samples. We will return ®bint in
the subsequent section, and for now will continue to use thation of the true distributiol for
simplicity. The chief theoretical result of this sectiorthst if we restrict our attention to off-policy
distributions within this convex set, we can prove nonilibounds about the approximation error
of the TD fixed point.

Theorem 2. Letw* be the unique solution thw* = I1p (R+~PPw*) whereD is any distribution
satisfying(13). Further, letD,, be the stationary distribution d?, and letD = D*1/2D;1/2 Thert

14+ vk(D)
L=y

F =0 (13)

[@wp = Vp < [TIpV = V|p. (14)

The bound here is of a similar form to the previously statednigofor on-policy TD, it bounds
the error of the TD solution relative to the error of the bessgible approximation, except for
the additionalyx(D) term, which measures how much the chosen distribution tees/iigom the
stationary distribution. Whe® = D,, x(D) = 1, so we recover the original bound up to a
constant factor. Even though the bound does include this teat depends on the distance from
the stationary distribution, no such bound is possiblelidhat do not satisfy the convex constraint
(13), as illustrated by the previous counter-example.

24 < 0 (A = 0) denotes that! is negative (positive) semidefinite.

3Using the Schur complement property t{atBAT g } >0 < BTAB - C <0][2, pg 650-651].

“1(A) denotes the condition number df the ratio of the singular valueg A) = omax(A)/Tmin(A).
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Figure 2: Counter example from Figure 1 shown with the setllofadid distributions for which
F = 0. Restricting the solution to this region avoids the posisyof the high error solution.

Proof. (of Theorem 2) By the triangle inequality and the definitidritee TD fixed point,
[®w} = Vip < [[®wh —HpVip + [HIpV = Vb
= [IIp(R + yPowp) — p(R+~yPV)|p + [IIpV = V|
=v||lp PPw}, —IpPV|p + |LIpV — V| p
<A|[lIpPow}, —Tlp PlIpV|[p +~|[[Hp PlIpV —TIp PV||p + [[HpV — V|| p.
(15)

SincellpV = ®w for somew, we can use the definition of our contractidi, Pow||p < ||Pw| p
to bound the first term as

I Pew), — Hp PIIpV | p < [|®w) — HpV|p < |@wh — V|p. (16)
Similarly, the second term in (15) can be bounded as
[TIp PIIpV —TIp PV|p < [[PUpV — PV|p < ||P|p|llpV - V|p (17)

where || P||p denotes the matrix norfiA||p = max,|,<1 ||Az||p. Substituting these bounds
back into (15) gives

(1 =yllewp = Vllp < (1 +~[Plp)[MpV = Vb, (18)
so all the remains is to show thgP| p < (D). To show this, first note thatP| p, = 1, since
<

max_|ap, = 1, (29)

max ||[Pz||p
lzllp, <1

"
lzllp, <1

and for any nonsingulab,

|Pllp = |\£ﬂ2§1 |Px||p = Hffﬁza)él \/yTD—1/2PTDPD—1/2y — |\D1/2PD—1/2||2, (20)

Finally, sinceD,, andD are both diagonal (and thus commute),
||D1/2PD71/2||2 _ HD;1/2D1/2D/1/2PD;1/2D71/2D}/2||2
< ||D, 2DV ||| D/ 2P D 2o D72 D
= ||D, 2D 2||o|| D72 D}/2||2 = k(D) 0

The final form of the bound can be quite loose of, course, aymfthe steps involved in the proof
used substantial approximations and discarded problegifipgata (such as the actudl, P|| p
term in favor of the generie(D) term, for instance). This is in constrast to the previousintioned
work of Yu and Bertsekas [19] that uses these and similarggoobtain much tigher, but data
dependent, bounds. Indeed, applying a theorem from thisweican arrive as a slightimprovement
of the bound above [13], but the focus here is just on the géfemm and possibility of the bound.

Returning to the counter-example from the previous segtiancan visualize the feasible region
for which F* = 0, shown as the shaded portion in Figure 2, and so constrathmgolution to
this feasible region avoids the possibility of the high esolution. Moreover, in this example the
optimal TD error occurs exactly at the point whexg;, (F') = 0, so that projecting an off-policy
distribution onto this set will give an optimal solution fimitially infeasible distributions.



4.1 Estimation from samples

Returning to the issue of optimizing this distrib‘ution onlsing samples from the system, we note
that analogous to LSTD, for samplés®, r(), ¢/ym

s 1 S(sDp(sNT  ¢(sp(s'NT | _ 1 g 4
F = m Z ¢(S/(i))¢(s(i))T QS(S(i))(]ﬁ(S(i))T =m ;Fz

i=1

m

(21)

will be an unbiased estimate of the LMI matrX (for a diagonal matrixD given the our sampling
distribution overs()). Placing a weightl; on each sample, we could optimize the sﬁﬁtd) =
S d; F; and obtain a tractable optimization problem. However,mijziing these weights freely is
not permissible, since this procedure allows us to chdpsé d; even ifs) = s(), which violates
the weights in the original LMI. However, if we additionalfgquire thats®) = sU) = d; = d,

(or more appropriately for continuous features and stdtwsexample that|d; — d;|| — 0 as
lp(s)) — ¢(s\9))|| — 0 according to some norm) then we are free to optimize oveethawpirical
distribution weights. In practice, we want to constrairstdistribution in a manner commensurate
with the complexity of the feature space and the number op$esn However, determining the best
such distributions to use in practice remains an open pnobde future work in this area.

Finally, since many empirical distributions satisﬁyd) = 0, we propose to “project” the empirical
distribution onto this set by minimizing the KL divergencetlveen the observed and optimized
distributions, subject to the constraint tHafd) > 0. Since this constraint is guaranteed to hold at
the stationary distribution, the intuition here is that bguimg closer to this set, we will likely obtain

a better solution. Formally, the final optimization problemtich we refer to as the TD-DO method
(Temporal Difference Distribution Optimization), is givéy

i —p; ; st 1Td=0, F(d) = .
mdln; pilogd; st., 1Td=0, F(d)=0, deC (22)

whereC is some convex set that respects the metric constraintsided@above. This is a convex op-
timization problem ind, and thus can be solved efficiently, though off-the-shdifess can perform
quite poorly, especially for large dimension

4.2 Efficient Optimization

Here we present a first-order optimization method based wngathe dual of (22). By properly
exploiting the decomposability of the objective and lowmkastructure of the dual problem, we
develop an iterative optimization method where each gradieep can be computed very efficiently.
The presentation here is necessarily brief due to spacdraons, but we also include a longer
description and an implementation of the method in the ®rpphtary material. For simplicity we
present the algorithm ignoring the constraintGethough we discuss possible additonal constraints
briefly in supplementary material.

We begin by forming the Lagrangian of (22), introducing Lagge multipliersZ € R2**2 for the

constraint'(d) = 0 andv € R for the constraini”d = 1. This leads to the dual optimization
problem

] — A. p— T n T —
eré%:jcym;n{ Elpz logd; —tr(Z* F(d)) +v(1°d 1)} (23)

TreatingZ as fixed, we maximize overand minimize ovetl in (23) using an equality-constrained,
feasible start Newton method [2, pg 528]. Since the objedt\separable over thg’s the Hessian
matrix is diagonal, and the Newton step can be computed(im) time; furthermore, since we
solve this subproblem for each update of dual variatdesve can warm-start Newton’s method
from previous solutions, leading to a number of Newton stepsis virtually constant in practice.

Considering now the maximization ovgr, the gradient of

9(2) = {Z —pilogd*(2) — e ZTF(d*(2)) + v*(2)(1Td*(Z) — 1)} (24)

K2
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Figure 3: Average approximation error of the TD methodshaglifferent numbers of bases func-
tions, for the random Markov chain (left) and diffusion ahéiight).
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Figure 5: Average approximation error for TD methods coragutia sampling, for different num-
bers of samples, for random Markov chain (left) and diffastbain (right).

is given simply byW 7 ¢(Z) = —F(d*(Z)). We then exploit the fact that we expétto typically be
low-rank by the KKT conditions for a semidefinite prograﬁ{d) andZ will have complementary
ranks, and since we expeEY(d) to be nearly full rank at the solution, we fact@r = Y'Y for

Y € RFXP with p < k. Although this is now a non-convex problem, local optimiaatof this
objective is still guaranteed to give a global solution te thiginal semidefinite problem, provided
we choose the rank df to be sufficient to represent the optimal solution [5]. Thadient of this
transformed problem i¥ ;g(YYT) = —2F(d)Y, which can be computed in tim@(mkp) since
eachF; term is a low-rank matrix, and we optimize the dual objectii@an off-the-shelf LBFGS
solver [12, 14]. Though it is difficult to boung aprirori, we can check after the solution that our
chosen value was sufficient for the global solution, and we lieund that very low value® (= 1
or p = 2) were sufficient in our experiments.

5 Experiments

Here we present simple simulation experiments illustgatinr proposed approach; while the evalua-
tion is of course small scale, the results highlight the pi&¢of TD-DO to improve TD algorithms
both practically as well as theoretically. Since the besefftthe method are clearest in terms of
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chains of two types: a random chain and a diffusion proceaéh

Figure 3 shows the average approximation error of the @iffealgorithms with differing numbers

of basis function, over 1000 domains. In this and all experita other than those evaluating the
effect of sampling, we use the full and P matrices to compute the convex set, so that we are
evaluating the performance of the approach in the limit gjdanumbers of samples. We evaluate
the approximation erroffVV — V||, where D is the off-policy sampling distribution (so as to be
as favorable as possible to off-policy TD). In all cases tie0O algorithm improves upon the
off-policy TD, though the degree of improvement can varyirminor to quite significant.

Figure 4 shows a similar result for varying the closenesshef 4¢ampling distribution to the
stationary distribution; in our experiments, the off-pglidistribution is sampled according to
D ~ Dir(1 + C,n) wherey denotes the stationary distribution. As expected, thepofiey ap-
proaches perform similarly for larger,, (approaching the stationary distribution), with TD-DO
having a clear advantage when the off-policy distribut®far from the stationary distribution.

In Figure 5 we consider the effect of sampling on the algorghFor these experiments we employ a
simple clustering method to compute a distribution ovetestathat respects the fact thats()) =
p(s0)) = d; = d;: we group the sampled states inftcclusters viak-means clustering on the
feature vectors, and optimize over the reduced distributie R*. In Figure 6 we vary the number
of clustersk for the sampled diffusion chain, showing that the algoriiemobust to a large number
of different distributional representations; we also shbe/performance of our method varying the
number of LBFGS iterations, illustrating that performageaerally improves monotonically.

6 Conclusion

The fundamental idea we have presented in this paper is yhabmsidering a convex subset of
off-policy distributions (and one which can be computedcedfitly from samples), we can provide
performance guarantees for the TD fixed point. While we hagaded on presenting error bounds
for the analytical (infinite sample) TD fixed point, a huge gwaf problems in TD learning arise
from this same off-policy issue: the convergence of theinalgTD method, the ability to find the
¢ regularized TD fixed point [6], the on-policy requirementtioé finite sample analysis of LSTD
[8], and the convergence of TD-based policy iteration atgors [7]. Although left for future work,
we suspect that the same techniques we present here caneatstending to these other cases,
potentially providing a wide range of analogous results$ il apply under off-policy sampling.
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5Experimental details: For the random Markov Chain row®&@re drawn |ID from a Dirichlet distribution,
and the reward and bases are random normal, }8th= 11. For the diffusion-based chain, we sample
|S| = 100 points from a 2D unit cube; € [0,1]* and seip(s’ = j|s = i) o exp(—|lzi — ;]|?/(20?))
for bandwidthe = 0.4. Similarly, rewards are sampled from a zero-mean Gaussian Pribssovariance
Ki; = exp(—|l=z; — z;]|?/(207)), and for basis vectors we use the principle eigenvectolSmf(V) =
E[(I —yP)RR*(I —vP)T] = (I —yP)K (I — vP)™, which are the optimal bases for representing value
functions (in expectation). Some details of the domains are omitted due de spastraints, but MATLAB
code for all the experiments is included in the supplementary files.
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