NIPS Proceedingsβ

Bayesian Action-Graph Games

Part of: Advances in Neural Information Processing Systems 23 (NIPS 2010)

[PDF] [BibTeX] [Supplemental]

Authors

Abstract

Games of incomplete information, or Bayesian games, are an important game-theoretic model and have many applications in economics. We propose Bayesian action-graph games (BAGGs), a novel graphical representation for Bayesian games. BAGGs can represent arbitrary Bayesian games, and furthermore can compactly express Bayesian games exhibiting commonly encountered types of structure including symmetry, action- and type-specific utility independence, and probabilistic independence of type distributions. We provide an algorithm for computing expected utility in BAGGs, and discuss conditions under which the algorithm runs in polynomial time. Bayes-Nash equilibria of BAGGs can be computed by adapting existing algorithms for complete-information normal form games and leveraging our expected utility algorithm. We show both theoretically and empirically that our approaches improve significantly on the state of the art.