
Latent Variable Models for Predicting File
Dependencies in Large-Scale Software Development

Diane J. Hu1, Laurens van der Maaten1,2, Youngmin Cho1, Lawrence K. Saul1, Sorin Lerner1
1Dept. of Computer Science & Engineering, University of California, San Diego

2Pattern Recognition & Bioinformatics Lab, Delft University of Technology
{dhu,lvdmaaten,yoc002,saul,lerner}@cs.ucsd.edu

Abstract

When software developers modify one or more files in a large code base, they
must also identify and update other related files. Many file dependencies can be
detected by mining the development history of the code base: in essence, groups
of related files are revealed by the logs of previous workflows. From data of this
form, we show how to detect dependent files by solving a problem in binary matrix
completion. We explore different latent variable models (LVMs) for this problem,
including Bernoulli mixture models, exponential family PCA, restricted Boltz-
mann machines, and fully Bayesian approaches. We evaluate these models on the
development histories of three large, open-source software systems: Mozilla Fire-
fox, Eclipse Subversive, and Gimp. In all of these applications, we find that LVMs
improve the performance of related file prediction over current leading methods.

1 Introduction

As software systems grow in size and complexity, they become more difficult to develop and main-
tain. Nowadays, it is not uncommon for a code base to contain source files in multiple programming
languages, text documents with meta information, XML documents for web interfaces, and even
platform-dependent versions of the same application. This complexity creates many challenges be-
cause no single developer can be an expert in all things.

One such challenge arises whenever a developer wishes to update one or more files in the code
base. Often, seemingly localized changes will require many parts of the code base to be updated.
Unfortunately, these dependencies can be difficult to detect. Let S denote a set of starter files that
the developer wishes to modify, and let R denote the set of relevant files that require updating after
modifying S. In a large system, where the developer cannot possibly be familiar with the entire code
base, automated tools that can recommend files inR given starter files in S are extremely useful.

A number of automated tools now make recommendations of this sort by mining the development
history of the code base [1, 2]. Work in this area has been facilitated by code versioning systems,
such as CVS or Subversion, which record the development histories of large software projects. In
these histories, transactions denote sets of files that have been jointly modified—that is, whose
changes have been submitted to the code base within a short time interval. Statistical analyses of
past transactions can reveal which files depend on each other and need to be modified together.

In this paper, we explore the use of latent variable models (LVMs) for modeling the development
history of large code bases. We consider a number of different models, including Bernoulli mixture
models, exponential family PCA, restricted Boltzmann machines, and fully Bayesian approaches.
In these models, the problem of recommending relevant files can be viewed as a problem in binary
matrix completion. We present experimental results on the development histories of three large
open-source systems: Mozilla Firefox, Eclipse Subversive, and Gimp. In all of these applications,
we find that LVMs outperform the current leading method for mining development histories.

1

2 Related work

Two broad classes of methods are used for identifying file dependencies in large code bases; one
analyzes the semantic content of the code base while the other analyzes its development history.

2.1 Impact analysis

The field of impact analysis [3] draws on tools from software engineering in order to identify the
consequences of code modifications. Most approaches in this tradition attempt to identify program
dependencies by inspecting and/or running the program itself. Such dependence-based techniques
include transitive traversal of the call graph as well as static [4, 5, 6] and dynamic [7, 8] slicing
techniques. These methods can identify many dependencies; however, they have trouble on cer-
tain difficult cases such as cross-language dependencies (e.g., between a data configuration file and
the code that uses it) and cross-program dependencies (e.g., between the front and back ends of a
compiler). These difficulties have led researchers to explore the methods we consider next.

2.2 Mining of development histories

Data-driven methods identify file dependencies in large software projects by analyzing their devel-
opment histories. Two of the most widely recognized works in this area are by Ying et al. [1] and
Zimmerman et al. [2]. Both groups use frequent itemset mining (FIM) [9], a general heuristic for
identifying frequent patterns in large databases. The patterns extracted from development histories
are just those sets of files that have been jointly modified at some point in the past; the frequent
patterns are the patterns that have occurred at least τ times. The parameter τ is called the minimum
support threshold. In practice, it is tuned to yield the best possible balance of precision and recall.

Given a database and a minimum support threshold, the resulting set of frequent patterns is uniquely
specified. Much work has been devoted to making FIM as fast and efficient as possible. Ying et
al. [1] uses a FIM algorithm called FP-growth, which extracts frequent patterns by using a tree-like
data structure that is cleverly designed to prune the number of possible patterns to be searched. FP-
growth is used to find all frequent patterns that contain the set of starter files; the joint sets of these
frequent patterns are then returned as recommendations. As a baseline in our experiments we use a
variant of FP-growth called FP-Max [10] which outputs only maximal sets for added efficiency.

Zimmerman et al. [2] uses the popular Apriori algorithm [11] (which uses FIM to solve a subtask) to
form association rules from the development history. These rules are of the form x1 → x2, where
x1 and x2 are disjoint sets; they indicate that “if x1 is observed, then based on experience, x2 should
also be observed.” After identifying all rules in which starter files appear on the left hand side, their
tool recommends all files that appear on the right hand side. They also work with content on a finer
granularity, recommending not only relevant files, but also relevant code blocks within files.

Both Ying et al. [1] and Zimmerman et al. [2] evaluate the data-driven approach by its f-measure, as
measured against “ground-truth” recommendations. For Ying et al. [1], these ground-truth recom-
mendations are the files committed for a completed modification task, as recorded in that project’s
Bugzilla. For Zimmerman et al. [2], the ground-truth recommendations are the files checked-in
together at some point in the past, as revealed by the development history.

Other researchers have also used the development history to detect file dependencies, but in
markedly different ways. Shirabad et al. [12] formulate the problem as one of binary classifica-
tion; they label pairs of source files as relevant or non-relevant based on their joint modification
histories. Robillard [13] analyzes the topology of structural dependencies between files at the code-
block level. Kagdi et al [14] improve on the accuracy of existing file recommendation methods
by considering asymmetric file dependencies; this information is also used to return a partial or-
dering over recommended files. Finally, Sherriff et al. [15] identify clusters of dependent files by
performing singular value decomposition on the development history.

3 Latent variable modeling of development histories

We examine four latent variable models of file dependence in software systems. All these models
represent the development history as an N × D large binary matrix, where non-zero elements in

2

the same row indicate files that were checked-in together or jointly modified at some point in time.
To detect dependent files, we infer the values of missing elements in this matrix from the values of
known elements. The inferences are made from the probability distributions defined by each model.
We use the following notation for all models:

1. The file list F = (f1, . . . , fD) is an ordered collection of all files referenced in a static
version of the development history.

2. A transaction is a set of files that were modified together, according to the development his-
tory. We represent each transaction by a D-dimensional binary vector x = (x1, . . . , xD),
where xi=1 if the fi is a member of the transaction, and xi=0 otherwise.

3. A development history D is a set of N transaction vectors {x1,x2, . . . ,xN}. We assume
them to be independently and identically sampled from some underlying joint distribution.

4. A starter set is a set of s starter files S = (fi1 , . . . , fis) that the developer wishes to modify.

5. A recommendation set is a set of recommended files R = (fj1 , . . . , fjr) that we label as
relevant to the starter set S.

3.1 Bernoulli mixture model

The simplest model that we explore is a Bernoulli mixture model (BMM). Figure 1(a) shows
the BMM’s graphical model in plate notation. In training, the observed variables are the D bi-
nary elements xi ∈ {0, 1} of each transaction vector. The hidden variable is a multinomial la-
bel z ∈ {1, 2, . . . , k} that can be viewed as assigning each transaction vector to one of k clusters.
The joint distribution of the BMM is given by:

p(x, z|π,µ) = p(z|π)

D∏
i=1

p(xi|z,µ) = πz

D∏
i=1

µxi
iz (1− µiz)1−xi . (1)

As implied by the graph in Fig. 1(a), we model the different elements of x as conditionally inde-
pendent given the label z. Here, the parameter πz = p(z|π) denotes the prior probability of the
latent variable z, while the parameter µiz = p(xi = 1|z,µ) denotes the conditional mean of the
observed variable xi. We use the EM algorithm to estimate parameters that maximize the likelihood
p(D|π,µ) =

∏
n p(xn|π,µ) of the transactions in the development history.

When a software developer wishes to modify a set of starter files, she can query a trained BMM
to identify a set of relevant files. Let s = {xi1 , . . . , xis} denote the elements of the transaction
vector indicating the files in the starter set S. Let r denote the D − s remaining elements of the
transaction vector indicating files that may or may not be relevant. In BMMs, we infer which
files are relevant by computing the posterior probability p(r|s = 1,π,µ). Using Bayes rule and
conditional independence, this posterior probability is given (up to a constant factor) by:

p(r|s=1,π,µ) ∝
k∑
z=1

p(r|z,µ) p(s=1|z,µ) p(z|π). (2)

The most likely set of relevant files, according to the model, is given by the completed transaction r∗

that maximizes the right hand side of eq. (2). Unfortunately, while we can efficiently compute the
posterior probability p(r|s = 1) for a particular set of recommended files, it is not straightforward to
maximize eq. (2) over all 2D−s possible ways to complete the transaction. As an approximation, we
sort the possibly relevant files by their individual posterior probabilities p(xi=1|s=1) for fi /∈ S.
Then we recommend all files whose posterior probabilities p(xi = 1|s = 1) exceed some threshold;
we optimize the threshold on a held-out set of training examples.

3.2 Bayesian Bernoulli mixture model

We also explore a Bayesian treatment of the BMM. In a Bayesian Bernoulli mixture (BBM), instead
of learning point estimates of the parameters {π,µ}, we introduce a prior distribution p(π,µ) and
make predictions by averaging over the posterior distribution p(π,µ|D). The generative model for
the BBM is shown graphically in Figure 1(b).

3

x

z

π

μ

N

(a) BMM.

x

z

π

μ

α

β,γ

NK

(b) BBM.

x

yc

N

b

W

(c) RBM.

x

u

N

V

(d) Logistic PCA.

Figure 1: Graphical model of the Bernoulli mixture model (BMM), the Bayesian Bernoulli mixture
(BBM), the restricted Boltzmann machine (RBM), and logistic PCA.

In our BBMs, the mixture weight parameters are drawn from a Dirichlet prior1:

p(π|α) = Dirichlet (π |α/k, . . . , α/k) , (3)

where k indicates (as before) the number of mixture components and α is a hyperparameter of the
Dirichlet prior, the so-called concentration parameter2. Likewise, the parameters of the k Bernoulli
distributions are drawn from Beta priors:

p(µj |β, γ) = Beta(µj |β, γ), (4)

where µj is a D-dimensional vector, and β and γ are hyperparameters of the Beta prior.

As exact inference in BBMs is intractable, we resort to collapsed Gibbs sampling and make pre-
dictions by averaging over samples from the posterior. In particular, we integrate out the Bernoulli
parameters µ and the cluster distribution parameters π, and we sample the cluster assignment vari-
ables z. For Gibbs sampling, we must compute the conditional probability p(zn = j|z−n,D) that
the nth transaction is assigned to cluster j, given the training data D and all other cluster assign-
ments z−n. This probability is given by:

p(zn = j|z−n,D) =
N−nj + α

k

N − 1 + α

D∏
i=1

[
(β +N−nij)

xni(γ +N−nj −N−nij)(1−xni)

β + γ +N−nj

]
, (5)

where N−nj counts the number of transactions assigned to cluster j (excluding the nth transaction)
and N−nij counts the number of times that the ith file belongs to one of these N−nj transactions.

After each full Gibbs sweep, we obtain a sample z(t) (and corresponding counts N (t)
j of the number

of points assigned to cluster j), which can be used to infer the Bernoulli parameters µ
(t)
j . We use

T of these samples to estimate the probability that a file xi needs to be changed given files in the
starter set S. In particular, averaging predictions over the T Gibbs samples, we estimate:

p(xi = 1|s = 1) ≈ 1

T

T∑
t=1

 1

N

k∑
j=1

N
(t)
j

p
(
xi = 1|µ(t)

j

)
p
(
s = 1|µ(t)

j

)
 , with µ

(t)
j =

1

N
(t)
j

∑
n:z

(t)
n =j

xn.

(6)

3.3 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a Markov random field (MRF) whose nodes are (typi-
cally) binary random variables [17]. The graphical model of an RBM is a fully connected bipartite

1In preliminary experiments, we also investigated an infinite mixture of Bernoulli distributions that replaces
the Dirichlet prior by a Dirichlet process [16]. However, we did not find the infinite mixture model to outper-
form its finite counterpart, so we do not discuss it further.

2For simplicity, we assume a symmetric Dirichlet prior, i.e. we assume ∀j : αj = α/k.

4

graph with D observed variables xi in one layer and k latent variables yj in the other; see Fig. 1(c).
Due to the bipartite structure, the latent variables are conditionally independent given the observed
variables (and vice versa). For the RBMs in this paper, we model the joint distribution as:

p(x,y) =
1

Z
exp

(
−x>Wy − b>x− c>y

)
, (7)

where W stores the weight matrix between layers, b and c store (respectively) the biases on ob-
served and hidden nodes, and Z is a normalization factor that depends on the model’s parameters.
The product form of RBMs can model much sharper distributions over the observed variables than
mixture models [17], making them an interesting alternative to consider for our application.

RBMs are trained by maximum likelihood estimation. Exact inference in RBMs is intractable due to
the exponential sum in the normalization factor Z. However, the conditional distributions required
for Gibbs sampling have a particularly simple form:

p(xi = 1|y) = σ
(∑

j
Wijyj +

∑
j
cj

)
, (8)

p(yj = 1|x) = σ
(∑

i
Wijxi +

∑
i
bi

)
, (9)

where σ(z) = [1 + e−z]−1 is the sigmoid function. The obtained Gibbs samples can be used to
approximate the gradient of the likelihood function with respect to the model parameters; see [17,
18] for further discussion of sampling strategies3.

To determine whether a file fi is relevant given starter files in S, we can either (i) clamp the ob-
served variables representing starter files and perform Gibbs sampling on the rest, or (ii) compute
the posterior over the remaining files using a fast, factorized approximation [19]. In preliminary
experiments, we found the latter to work best. Hence, we recommend files by computing

p(xi=1|s=1) ∝ exp(bi)

k∏
`=1

(
1 + exp

{∑
j:fj∈S

xjWj` +Wi` + c`

})
, (10)

then thresholding these probabilities on some value determined on held-out examples.

3.4 Logistic PCA

Logistic PCA is a method for dimensionality reduction of binary data; see Fig. 1(d) for its graph-
ical model. Logistic PCA belongs to a family of algorithms known as exponential family PCA;
these algorithms generalize PCA to data modeled by non-Gaussian distributions of the exponential
family [20, 21, 22]. To use logistic PCA, we stack the N transaction vectors xn ∈ {0, 1}D of the
development history into a N×D binary matrix X. Then, modeling each element of this matrix as
a Bernoulli random variable, we attempt to find a low-rank factorization of the N×D real-valued
matrix Θ whose elements are the log-odds parameters of these random variables.

The low-rank factorization in logistic PCA is computed by maximizing the log-likelihood of the
observed data X. In terms of the log-odds matrix Θ, this log-likelihood is given by:

LX(Θ) =
∑
nd

[
Xnd log σ(Θnd) + (1−Xnd) log σ(−Θnd)

]
. (11)

We obtain a low dimensional representation of the data by factoring the log-odds matrix Θ∈<N×D
as the product of two smaller matrices U∈<N×L and V∈<L×D. Specifically, we have:

Θnd =
∑
`

Un`V`d. (12)

Note that the reduced rank L� D plays a role analogous to the number of clusters k in BMMs.

After obtaining a low-rank factorization of the log-odds matrix Θ = UV, we can use it to rec-
ommend relevant files from starter files S = {fi1 , fi2 , . . . , fis}. To recommend relevant files, we
compute the vector u that optimizes the regularized log-loss:

LS(u) =

s∑
j=1

log σ(u·vij) +
λ

2
‖u‖2, (13)

3We use the approach in [17] known as contrastive divergence with m Gibbs sweeps (CD-m).

5

Mozilla Firefox Eclipse Subversive Gimp
Time Period March 2007 - Nov 2007 Dec 2006 - May 2010 Nov 2007 - May 2010

Support Train Test Files Train Test Files Train Test Files
10 9,579 2,666 1,264 372 114 61 5,359 3,608 1,376
15 9,015 2,266 778 316 92 38 5,084 3,436 899
20 8,497 1,991 546 282 79 30 4,729 3,208 600
25 8,021 1,771 411 233 59 25 4,469 3,012 447

Table 1: Datasets statistics, showing the time period from which transactions were extracted, and
the number of transactions and unique files in the training and test sets (for a single starter file).

where in the first term, v` denotes the `th column of the matrix V, and in the second term, λ is a
regularization parameter. The vector u obtained in this way is the low dimensional representation
of the transaction with starter files in S. To determine whether file fi is relevant, we compute the
probability p(xi = 1|u,V) = σ(u ·vi) and recommend the file if this probability exceeds some
threshold. (We tune the threshold on held-out transactions from the development history).

4 Experiments

We evaluated our models on three datasets4 constructed from check-in records of Mozilla Firefox,
Eclipse Subversive, and Gimp. These open-source projects use software configuration management
(SCM) tools which provide logs that allow us to extract binary vectors indicating which files were
changed during a transaction. Our experimental setup and results are described below.

4.1 Experimental setup

We preprocess the raw data obtained from SCM’s check-in records in two steps. First, follow-
ing Ying et al [1], we eliminate all transactions consisting of more than 100 files (as these usually do
not correspond to meaningful changes). Second, we simulate the minimum support threshold (see
Section 2.2) by removing all files in the code base that occur very infrequently. This pruning allows
us to make a fair comparison with latent variable models (LVMs).

After pre-processing, the dataset is chronologically ordered; the first two-thirds is used as training
data, and the last one-third as testing data. For each transaction in the test set, we formed a “query”
and “label” set by randomly picking a set of changed files as starter files. The remaining files that
were changed in the transaction form the label set, which is the set of files our models must predict.
Following [1], we only include transactions for which the label set is non-empty in the train data.
Table 1 shows the number of transactions for training and test set, as well as the total number of
unique files that appear in these transactions.

We trained the LVMs as follows. The Bernoulli mixture models (BMMs) were trained by 100
or fewer iterations of the EM algorithm. For the Bayesian mixtures (BBMs), we ran 30 separate
Markov chains and made predictions after 30 full Gibbs sweeps5. The RBMs were trained for 300
iterations of contrastive divergence (CD), starting with CD-1 and gradually increasing the number
of Gibbs sweeps to CD-9 [17]. The parameters U and V of logistic PCA were learned using an
alternating least squares procedure [21] that converges to a local maximum of the log-likelihood.
We initialized the matrices U and V from an SVD of the matrix X.

The parameters of the LVMs (i.e., number of hidden components in the BMM and RBM, as well
as the number of dimensions and the regularization parameter λ in logistic PCA) were selected
based on the performance on a small held-out validation set. The hyperparameters of the Bayesian
Bernoulli mixtures were set based on prior knowledge from the domain: the Beta-prior parameters β
and γ were set to 0.005 and 0.95, respectively, to reflect our prior knowledge that most files are not
changed in a transaction. The concentration parameter α was set to 50 to reflect our prior knowledge
that file dependencies typically form a large number of small clusters.

4These binary datasets publicly available at http://cseweb.ucsd.edu/∼dhu/research/msr
5In preliminary experiments, we found 30 Gibbs sweeps to be sufficient for the Markov chain to mix.

6

Mozilla Firefox Eclipse Subversive Gimp
Model Support Start = 1 Start = 3 Start = 1 Start = 3 Start = 1 Start = 3

FIM

10 0.106 0.136 0.112 0.195 0.133 0.382 0.234 0.516 0.020 0.116 0.016 0.176
15 0.129 0.144 0.127 0.194 0.141 0.461 0.319 0.632 0.014 0.091 0.016 0.159
20 0.115 0.137 0.106 0.186 0.177 0.550 0.364 0.672 0.007 0.066 0.013 0.129
25 0.124 0.135 0.110 0.195 0.227 0.616 0.360 0.637 0.006 0.057 0.010 0.095

BMM

10 0.160 0.189 0.106 0.158 0.222 0.433 0.206 0.479 0.129 0.177 0.084 0.152
15 0.160 0.202 0.110 0.141 0.181 0.486 0.350 0.489 0.134 0.205 0.085 0.143
20 0.172 0.204 0.120 0.147 0.196 0.530 0.403 0.514 0.127 0.207 0.085 0.154
25 0.177 0.218 0.130 0.160 0.251 0.566 0.382 0.482 0.117 0.212 0.010 0.131

BBM

10 0.196 0.325 0.180 0.376 0.257 0.547 0.278 0.700 0.114 0.174 0.104 0.177
15 0.192 0.340 0.180 0.376 0.202 0.607 0.374 0.769 0.114 0.200 0.107 0.183
20 0.206 0.355 0.191 0.417 0.223 0.655 0.413 0.791 0.114 0.205 0.108 0.187
25 0.197 0.360 0.175 0.391 0.262 0.694 0.418 0.756 0.110 0.206 0.103 0.179

RBM

10 0.157 0.230 0.069 0.307 0.170 0.233 0.090 0.405 0.074 0.137 0.028 0.194
15 0.156 0.246 0.063 0.310 0.157 0.238 0.138 0.423 0.080 0.148 0.024 0.205
20 0.169 0.260 0.058 0.324 0.174 0.307 0.178 0.531 0.074 0.156 0.027 0.242
25 0.172 0.269 0.088 0.340 0.200 0.426 0.259 0.524 0.062 0.143 0.025 0.230

LPCA

10 0.200 0.249 0.169 0.300 0.124 0.415 0.230 0.609 0.123 0.187 0.148 0.263
15 0.182 0.254 0.157 0.295 0.138 0.452 0.281 0.615 0.124 0.200 0.145 0.288
20 0.182 0.265 0.156 0.308 0.212 0.517 0.325 0.667 0.115 0.222 0.135 0.300
25 0.174 0.277 0.162 0.325 0.247 0.605 0.344 0.625 0.100 0.205 0.131 0.230

Table 2: Performance of FIM and LVMs on three datasets for queries with 1 or 3 starter files. Each
shaded column presents the f -measure, and each white column presents the correct prediction ratio.

4.2 Results

Our experiments evaluated the performance of each LVM, as well as a highly efficient implemen-
tation of FIM called FP-Max [10]. Several experiments were run on different values of starter files
(abbreviated “Start”) and minimum support thresholds (abbreviated “Support”). Table 2 shows the
comparison of each model in terms of the f -measure (the harmonic mean of the precision and re-
call) and the “correct prediction ratio,” or CPR (the fraction of files we predict correctly, assuming
that the number of files to be predicted is given). The latter measure reflects how well our models
identify relevant files for a particular starter file, without the added complication of thresholding.
Experiments that achieve the highest result for each of the two measures are boldfaced.

From our results, we see that most LVMs outperform the popular FIM approach. In particular, the
BBMs outperform all other approaches on two of the three datasets, with a high of CPR = 79% in
Eclipse Subversive. This means that an average of 79% of all dependent files are detected as relevant
by the BBM. We also observe that f -measure generally decreases with the addition of starter files
– since the average size of transactions is relatively small (around four files for Firefox), adding
starter files must make predictions less obvious in the case that the total number of relevant files is
not given to us. Increasing support, on the other hand, seems to effectively remove noise caused by
infrequent files. Finally, we see that recommendations are most accurate on Eclipse Subversive, the
smallest dataset. We believe this is because a smaller test set does not require a model to predict as
far into the future as a larger one. Thus, our results suggest that an online learning algorithm may
further increase accuracy.

5 Discussion

The use of LVMs has significant advantages over traditional approaches to impact analysis (see
Section 2), namely its ability to find dependent files written in different languages. To show this, we
present the three clusters with the highest weights, as discovered by a BMM in the Firefox data, in
Table 3. The table reveals that the clusters correspond to interpretable structure in the code that span
multiple data formats and languages. The first cluster deals with the JIT compiler for JavaScript,
while the second and third deal with the CSS style sheet manager and web browser properties. The
dependencies in the last two clusters would have been missed by conventional impact analysis.

7

Cluster 1 Cluster 2 Cluster 3
js/src/jscntxt.h view/src/nsViewManager.cpp browser/base/content/browser-context.inc
js/src/jstracer.cpp layout/generic/nsHTMLReflowState.cpp browser/base/content/browser.js
js/src/nanojit/Assembler.cpp layout/reftests/bugs/reftest.list browser/base/content/pageinfo/pageInfo.xul
js/src/jsregexp.cpp layout/style/nsCSSRuleProcessor.cpp browser/locales/en-US/chrome/browser/browser.dtd
js/src/jsapi.cpp layout/style/nsCSSStyleSheet.cpp toolkit/mozapps/update/src/nsUpdateService.js.in
js/src/jsarray.cpp layout/style/nsCSSParser.cpp toolkit/mozapps/update/src/updater/updater.cpp
js/src/jsfun.cpp layout/base/crashtests/crashtests.list modules/plugin/base/src/nsNPAPIPluginInstance.h
js/src/jsinterp.cpp layout/base/nsBidiPresUtils.cpp modules/plugin/base/src/nsPluginHost.cpp
js/src/jsnum.cpp layout/base/nsPresShell.cpp browser/locales/en-US/chrome/browser/browser.properties
js/src/jsobj.cpp content/xbl/src/nsBindingManager.cpp view/src/nsViewManager.cpp

Table 3: Three of the clusters from Firefox, identified by the BMM. We show the clusters with
the largest mixing proportion. Within each cluster, the 10 files with highest membership probabil-
ities are shown; note how these files span multiple data formats and program languages, revealing
dependencies that would escape the notice of traditional methods.

LVMs also have important advantages over FIM. Given a set S of starter files, FIM simply looks at
co-occurrence data; it recommends a set of filesR for which the number of transactions that contain
both R and S is frequent. By contrast, LVMs can exploit higher-order information by discovering
the underlying structure of the data. Our results suggest that the ability to leverage such structure
leads to better predictions. Admittedly, in terms of computation, LVMs have a larger one-time
training cost than the FIM, as we must first train the model or generate and store the Gibbs samples.
However, for a single query, the time required to compute recommendations is comparable to that
of the FP-Max algorithm we used for FIM.

The results from the previous section also revealed significant differences between the LVMs we
considered. In the majority of our experiments, mixture models (with many mixture components)
appear to outperform RBMs and logistic PCA. This result suggests that our dataset consists of a large
number of transactions with a number of small, highly interrelated files. Modeling such data with a
product of experts such as an RBM is difficult as each individual expert has the ability to “veto” a
prediction. We tried to resolve this problem by using a sparsity prior on the states of the hidden units
y to make the RBMs behave more like a mixture model [23], but in preliminary experiments, we
did not find this to improve the performance. Another interesting observation is that the Bayesian
treatment of the Bernoulli mixture model generally leads to better predictions than a maximum
likelihood approach, as it is less susceptible to overfitting. This advantage is particularly useful in
file dependency prediction which requires models with a large number of mixture components to
appropriately model data that consists of many small, distinct clusters while having few training
instances (i.e., transactions).

6 Conclusion

In this paper, we have described a new application of binary matrix completion for predicting file
dependencies in software projects. For this application, we investigated the performance of four
different LVMs and compared our results to that of the widely used of FIM. Our results indicate that
LVMs can significantly outperform FIM by exploiting latent, higher-order structure in the data.

Admittedly, our present study is still limited in scope, and it is very likely that our results can be
further improved. For instance, results from the Netflix competition have shown that blending the
predictions from various models often leads to better performance [24]. The raw transactions also
contain additional information that could be harvested to make more accurate predictions. Such
information includes the identity of users who committed transactions to the code base, as well as
the text of actual changes to the source code. It remains a grand challenge to incorporate all the
available information from development histories into a probabilistic model for predicting which
files need to be modified. In future work, we aim to explore discriminative methods for parameter
estimation, as well as online algorithms for tracking non-stationary trends in the code base.

Acknowledgments

LvdM acknowledges support by the Netherlands Organisation for Scientific Research (grant no.
680.50.0908) and by EU-FP7 NoE on Social Signal Processing (SSPNet).

8

References
[1] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predicting source code changes by mining

change history. IEEE Transactions on Software Engineering, 30(9):574–586, 2004.

[2] T. Zimmerman, P. Weibgerber, S. Diehl, and A. Zeller. Mining version histories to guide software changes.
Proceedings of the 26th International Conference on Software Engineering, pages 563–572, 2004.

[3] R. Arnold and S. Bohner. Software Change Impact Analysis. IEEE Computer Society, 1996.

[4] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software Engineering,
pages 439–449, 1981.

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–60, 1990.

[6] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3:121–189, 1995.

[7] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–163, 1988.

[8] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. In Proceedings of the 25th

International Conference on Software Engineering, pages 319–329, 2003.

[9] B. Goethals. Frequent set mining. In The Data Mining and Knowledge Discovery Handbook, pages
377–397, 2005.

[10] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. Proceedings of the 1st

ICDM Workshop on Frequent Itemset Mining Implementations, 2003.

[11] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association
rules. 1997.

[12] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Mining the maintenance history of a legacy software
system. Proceedings of the 19th International Conference on Software Maintenance, pages 95–104, 2003.

[13] M. Robillard. Automatic generation of suggestions for program investigation. ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 30:11–20, 2005.

[14] H. Kagdi, S. Yusaf, and J.I. Maletic. Mining sequences of changed-files from version histories. Proc. of
Int. Workshop on Mining Software Repositories, pages 47–53, 2006.

[15] M. Sherriff, J.M. Lake, and L. Williams. Empirical software change impact analysis using singular value
decomposition. International Conference on Software Testing, Verification, and Validation, 2008.

[16] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computa-
tional and Graphical Statistics, 9:249–265, 2000.

[17] G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14(8):1771–1800, 2002.

[18] T. Tieleman. Training Restricted Boltzmann Machines using approximations to the likelihood gradient. In
Proceedings of the International Conference on Machine Learning, volume 25, pages 1064–1071, 2008.

[19] R.R. Salakhutdinov, A. Mnih, and G.E. Hinton. Restricted Boltzmann Machines for collaborative filtering.
In Proceedings of the 24th International Conference on Machine Learning, pages 791–798, 2007.

[20] M. Collins, S. Dasgupta, and R.E. Schapire. A generalization of principal components analysis to the
exponential family. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[21] A.I. Schein, L.K. Saul, and L.H. Ungar. A generalized linear model for principal component analysis of
binary data. In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics,
2003.

[22] I. Rish, G. Grabarnik, G. Cecchi, F. Pereira, and G.J. Gordon. Closed-form supervised dimensionality re-
duction with generalized linear models. In Proceedings of the 25th International Conference on Machine
learning, pages 832–839, 2008.

[23] M.A. Ranzato, Y.L. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In Advances
in Neural Information Processing Systems, pages 1185–1192, 2008.

[24] R.M. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newslet-
ter, 9(2):75–79, 2007.

9

