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Abstract

Singular Value Decomposition (and Principal Componentlysig) is one of the
most widely used techniques for dimensionality reductisaccessful and effi-
ciently computable, it is nevertheless plagued by a wetivkm, well-documented
sensitivity to outliers. Recent work has considered théngetvhere each point
has a few arbitrarily corrupted components. Yet, in apgiices of SVD or PCA
such as robust collaborative filtering or bioinformaticslitious agents, defec-
tive genes, or simply corrupted or contaminated experigaaty effectively yield
entire points that are completely corrupted.

We present an efficient convex optimization-based algaritve call Outlier Pur-
suit, that under some mild assumptions on the uncorruptedspsatisfied, e.g.,
by the standard generative assumption in PCA problemsyeestheexactopti-
mal low-dimensional subspace, and identifies the corruptéats. Such identi-
fication of corrupted points that do not conform to the lowrdnsional approxi-
mation, is of paramount interest in bioinformatics and friahapplications, and
beyond. Our techniques involve matrix decomposition usiaglear norm min-
imization, however, our results, setup, and approach,sseciy differ consider-
ably from the existing line of work in matrix completion andatrix decompo-
sition, since we develop an approach to recover the coo@uamn spacef the
uncorrupted matrix, rather than the exact matrix itself.

1 Introduction

This paper is about the following problem: suppose we arergav largedata matrix M/, and we
know it can be decomposed as

M = LO + C(),
where L is a low-rank matrix, and’y is non-zero in only a fraction of the columns. Aside from
these broad restrictions, both components are arbitrarpatticular we do not know the rank (or
the row/column space) dfy, or the number and positions of the non-zero column§pfCan we
recover the column-space of the low-rank mattix and the identities of the non-zero columns of
Cp, exactlyand efficiently?

We are primarily motivated by Principal Component Analy@*CA), arguably the most widely
used technique for dimensionality reduction in statistitz#ta analysis. The canonical PCA prob-
lem [1], seeks to find the best (in the least-square-errasegdow-dimensional subspace approx-
imation to high-dimensional points. Using the SingulardéaDecomposition (SVD), PCA finds
the lower-dimensional approximating subspace by formingwarank approximation to the data



matrix, formed by considering each point as a column; theutudf PCA is the (low-dimensional)
column space of this low-rank approximation.

Itis well known (e.g., [2—4]) that standard PCA is extremiegile to the presence olutliers even

a single corrupted point can arbitrarily alter the qualityfe approximation. Such non-probabilistic
or persistent data corruption may stem from sensor faijunedicious tampering, or the simple fact
that some of the available data may not conform to the preduavedimensional source / model.
In terms of the data matrix, this means that most of the coluewtors will lie in a low-dimensional
space —and hence the corresponding mdigiwill be low-rank — while the remaining columns will
be outliers — corresponding to the column-sparse métriXhe natural question in this setting is to
ask if we can still (exactly or near-exactly) recover theuooh space of the uncorrupted points, and
the identities of the outliers. This is precisely our proble

Recent years have seen a lot of work on both robust PCA [3,]5-at@ on the use of convex
optimization for recovering low-dimensional structure18—15]. Our work lies at the intersection
of these two fields, but has several significant differenoas fwork in either space. We compare
and relate our work to existing literature, and expand ortffferences, in Section 3.3.

2 Problem Setup

The precise PCA with outlier problem that we consider is digvis: we are givem points inp-
dimensional space. A fractidn-~ of the points lie on a-dimensionatrue subspace of the ambient
R?, while the remainingyn points arearbitrarily located — we call these outliers/corrupted points.
We do not have any prior information about the true subspads dimensionr. Given the set of
points, we would like to learfa) the true subspace aifl) the identities of the outliers.

As is common practice, we collate the points intp a n data matrix}/, each of whose columns
is one of the points, and each of whose rows is one optt@ordinates. It is then clear that the data
matrix can be decomposed as

M = Lo + Cy.
Here L, is the matrix corresponding to the non-outliers; thusk(L,) = r. Consider its Singular
Value Decomposition (SVD)

Lo = Up%o V' . 1)
Thus it is clear that the columns 6f, form an orthonormal basis for thedimensional true sub-
space. Also note that at most — )n of the columns of,, are non-zero (the rest correspond to
the outliers).C is the matrix corresponding to the non-outliers; we will denthe set of non-zero
columns ofCy by Zy, with |Zy| = yn. These non-zero columns are completely arbitrary.

With this notation, out intent is texactlyrecover the column space 6f, and the set of outlier,.
Clearly, this is not always going to be possible (regardéégke algorithm used) and thus we need
to impose a few additional assumptions. We develop thesedtidh 2.1 below.

We are also interested in the noisy case, where
M = Lo+ Cy+ N,

andN corresponds to any additional noise. In this case we areeisted in approximate identifica-
tion of both the true subspace and the outliers.

2.1 Incoherence: When does exact recovery make sense?

In general, our objective of splitting a low-rank matrixfin@ column-sparse one is not always a well
defined one. As an extreme example, consider the case wigedatd matrix}/ is non-zero in only
one column. Such a matrix is both low-rank and column-spédnses the problem is unidentifiable.
To make the problem meaningful, we need to impose that thedmlk matrix L, cannot itself be
column-sparse as well. This is done via the followingoherence conditian

Definition: A matrix L € RP*™ with SVD as in (1), and1 — «)n of whose columns are non-zero,
is said to becolumn-incoherenwith parametey if

wr
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where{e;} are the coordinate unit vectors.

Thus if V' has a column aligned with a coordinate axis, thes (1 — v)n/r. Similarly, if V' is

perfectly incoherent (e.g. if = 1 and every non-zero entry 8f has magnitudé /+/(1 — v)n)
theny = 1.

In the standard PCA setup, if the points are generated by smmdimensional isometric Gaussian
distribution, then with high probability, one will haye= O(max(1,log(n)/r)) [16]. Alternatively,
if the points are generated by a uniform distribution oveoandedset, therp = O(1).

A small incoherence parameteressentially enforces that the matiiy will have column support
that is spread out. Note that this is quite natural from thaiegtion perspective. Indeed, if the left
hand side is as big as 1, it essentially means that one of teetidins of the column space which we
wish to recover, is defined by only a single observation. Give regime of a constant fraction of
arbitrarily chosenandarbitrarily corruptedpoints, such a setting is not meaningful. Indeed, having
a small incoherencg is an assumption made in all methods based on nuclear norimination

up to date [4,15-17].

We would like to identify the outliers, which can be arbifraHowever, clearly an “outlier” point
that lies in the true subspace is a meaningless concept, ifhugtrix terms, we require that every
column ofC does not lie in the column space b§.

The parameterg and~ are not required for the execution of the algorithm, dochot need to be
known a priori They only arise in the analysis of our algorithm'’s performoa.

Other Notation and Preliminaries: Capital letters such ad are used to represent matrices, and
accordingly,A; denotes theé'" column vector. Letterg/, V, 7 and their variants (complements,
subscripts, etc.) are reserved for column space, row spateadumn support respectively. There
are four associated projection operators we use throughtet projection onto the column space,
U, is denoted byP;; and given byPy(A) = UU T A, and similarly for the row-spacBy (A) =
AVV'T. The matrixPz(A) is obtained fromA by setting colummnd; to zero for alli ¢ Z. Finally,

Pr is the projection to the space spannedibyandV, and given byPr(-) = Py(-) + Pv(:) —
PuPv(-). Note thatP; depends oV andV, and we suppress this notation wherever it is clear
whichU andV we are using. The complementary operat®s, , Py ., P andPz. are defined
as usual. The same notation is also used to represent a selifpaatrices: e.g., we writé € Py

for any matrixA that satisfied? (A) = A. Five matrix norms are useflA||.. is the nuclear norm,

| Al is the spectral normijA|; » is the sum of¢, norm of the columnsy;, || Al|« 2 is the largest

¢5 norm of the columns, an(l4|| ¢ is the Frobenius norm. The only vector norm useffl iz, the

¢ norm. Depending on the contextjs either the unit matrix, or the identity operatef;is thei‘"
base vector. The SVD df, is UyXoV,". The rank ofL, is denoted as, and we havey = |Zy|/n,

i.e., the fraction of outliers.

3 Main Results and Consequences

While we do not recover the matrik,, we show that the goal of PCA can be attained: even under
our strong corruption model, with a constant fraction ofrgeicorrupted, we show that we can —
under very weak assumptiongxactlyrecover both the column spacelqof (i.e the low-dimensional
space the uncorrupted points lie on) and the column suppaij G.e. the identities of the outliers),
from M. If there is additional noise corrupting the data matri, if we haveM = Lo + Cy + N,

a natural variant of our approach finds a good approximation.

3.1 Algorithm

Given data matrix\/, our algorithm, calle@utlier Pursuit generatega) a matrixU, with orthonor-
mal rows, that spans the low-dimensional true subspace wetwaecover, angb) a set of column
indicesZ corresponding to the outlier points. To ensure success;lomiee of the tuning parameter

IS\ = % as Theorem 1 below suggests.

While in the noiseless case there are simple algorithms suithilar performance, the benefit of
the algorithm, and of the analysis, is extension to morastabnd interesting situations where in



Algorithm 1 Outlier Pursuit
Find (Ji, C‘), the optimum of the following convex optimization program.

Minimize: L]« +ACll1 2 )
Subject to: M=L+C

Compute SVDL = U, 3, V" and output/ = U;.
Output the set of non-zero columns@fi.e. I = {j : ¢;; # 0 for somei}.

addition to gross corruption of some samples, there is imditnoise. Adapting the Outlier Pursuit
algorithm, we have the following variant for the noisy case.

Minimize: IL||« + M|C|l1.2

Noisy Outlier Pursuit: Subject to: |[M—(L+C)|p<e ®3)

Outlier Pursuit (and its noisy variant) is a convex surredat the following natural (but combina-
torial and intractable) first approach to the recovery pgobl

Minimize: rank(L) @)
Subject to: M=L+C

where|| - ||o, stands for the number of non-zero columns of a matrix.

3.2 Performance

We show that under rather weak assumptions, Outlier Puggaittly recovers the column space of
the low-rank matrix’g, and the identities of the non-zero columns of outlier mxafkj. The formal
statement appears below.

Theorem 1 (Noiseless Case)Suppose we obserd = Ly + Cj, whereL, has rankr and inco-
herence parametes. Suppose further that, is supported on at mostn columns. Any output to
Outlier Pursuit recovers the column space exactly, andtifies exactly the indices of columns cor-
responding to outliers not lying in the recovered columncgpas long as the fraction of corrupted
points,v, satisfies
TS (5)
1-— ur
wherec; = m This can be achieved by settmg the parametén outlier pursuit to be-——
indeed it holds for any in a specific range which we provide below.

v

For the case where in addition to the corrupted points, we haisy observationsy/ = M + W,
we have the following result.

Theorem 2 (Noisy Case).Suppose we obsendd = M + N = Lo + Cy + N, where

0 2 (6)
1—7v wr

with co = 1557, and||N||F < e. Let the output of Noisy Outlier Pursuit g, C’. Then there exists
L,C suchthat\ = L+C, L has the correct column space, afidhe correct column support, and

I = Llr <10V (€7 =l < 9v/ne:.

The conditions in this theorem are essentially tight in tifving scaling sense (i.e., up to universal
constants). If there is no additional structure imposeglohd what we have stated above, then up
to scaling, in the noiseless case, Outlier Pursuit can excoom as many outliers (i.e., the same
fraction) as any possible algorithm with arbitrary comjitiexin particular, it is easy to see that if
the rank of the matrixL is r, and the fraction of outliers satisfies> 1/(r + 1), then the problem

is not identifiable, i.e., no algorithm can separate autbemtd corrupted points.

INote that this is no longer true in the presence of stronggiraptions, e.g., isometric distribution, on the
authentic points [12].



3.3 Related Work

Robust PCA has a long history (e.g., [3,5-11]). Each of tledgerithms either performs standard
PCA on a robust estimate of the covariance matrix, or findsctions that maximize a robust es-
timate of the variance of the projected data. These algostheek taapproximatelyrecover the
column space, and moreover, no existing approach attemuterttify the set of outliers. This out-
lier identification, while outside the scope of traditioR&A algorithms, is important in a variety of
applications such as finance, bio-informatics, and more.

Many existing robust PCA algorithms suffer two pitfalls: rfsgmance degradation with dimen-
sion increase, and computational intractability. To wi8]shows several robust PCA algorithms
including M-estimator [19], Convex Peeling [20], Ellipsiai Peeling [21], Classical Outlier Rejec-
tion [22], Iterative Deletion [23] and Iterative Trimming4] have breakdown points proportional to
the inverse of dimensionality, and hence are useless inighedimensional regime we consider.

Algorithms with non-diminishing breakdown point, such aejection-Pursuit [25] are non-convex
or even combinatorial, and hence computationally intizlet@NP-hard) as the size of the problem
scales. In contrast to these, the performance of OutliesuRudoes not depend gn and can be
solved in polynomial time.

Algorithms based on nuclear norm minimization to recovey lank matrices are now standard,
since the seminal paper [14]. Recent work [4,15] has takentitlear norm minimization approach
to the decomposition of a low-rank matrix and an overall spanatrix. At a high level, these papers
are close in spirit to ours. However, there are criticalt#ices in the problem setup, the results, and
in key analysis techniques. First, these algorithms faillinsetting as they cannot handle outliers —
entire columns where every entry is corrupted. Second, &idecthnical and proof perspective, all
the above works investigaexactsignal recovery — the intended outcome is known ahead of, time
and one just needs to investigate the conditions needediémess. In our setting however, the
convex optimization cannot recovgy itself exactly. This requires an auxiliary “oracle probleas
well as different analysis techniques on which we elabdvatew.

4 Proof Outline and Comments

In this section we provide an outline of the proof of TheoremThe full proofs of all theorems
appear in a full version available online [26]. The proofdals three main steps

1. Ildentify the first-order necessary and sufficient condgi for any paifL’, C’) to be the
optimum of the convex program (2).

2. Consider a candidate pa_iE, C‘) that is the optimum of an alternate optimization problem,

often called the “oracle problem”. The oracle problem eastuhat the pai(ﬁ, C’) has the
desired column space and column support, respectively.

3. Show that thigL, () is the optimum of Outlier Pursuit.

We remark that the aim of the matrix recovery papers [4, 1pwi® exact recovery of thentire
matrix, and thus the optimality conditions required ar@cl&ince our setup precludes exact recov-
ery of Ly andCy, 2 our optimality conditions must imply the optimality for Gier Pursuit of an

as-of-yet-undetermined pa(iﬁ, C), the solution to the oracle problem. We now elaborate.

Optimality Conditions : We now specify the conditions a candidate optimum needstisfg; these
arise from the standard subgradient conditions for the sanmolved. Suppose the pdit’, C’) is a
feasible point of (2), i.e. we have that+ C’ = M. Letthe SVD ofL’ be given byL’ = U'S/V'T.
For any matrixX, definePr/(X) := U'U'T X + XV'V'T —U'U'T XV'V'T, the projection ofX
onto matrices that share the same column space or row sptcé’wi

LetZ' be the set of non-zero columns 6f, and letH’ be the column-normalized version ©f.
That is, columnH = ”CCW foralli € 7/, andH; = 0 for all ¢ ¢ Z'. Finally, for any matrixX let
P/ (X) denote the matrix with all columns iff¢ set to 0, and the columns # left as-is.

2The optimumL of (2) will be non-zero in every column @, that is notorthogonalto Ly’s column space.



Proposition 1. With notation as abovd,’, C’ is an optimum of the Outlier Pursuit progam (2) if
there exists &) such that

Pr(Q)=U"V’ 1Q—Pr(Q) <1 @)
Pr(Q) = \H' 1Q —Pzr(Q)lloc,2 < A

Further, if both inequalities above are strict, dubbédstrictly satisfies (7)then(L’,C”) is the
unigue optimum.

Note that herd| - || is the spectral norm (i.e. largest singular value) &nd - 2 is the magnitude —
i.e. /> norm — of the column with the largest magnitude.

Oracle Problem: We develop our candidate soluti()ﬁ, C) by considering the alternate optimiza-
tion problem where we add constraints to (2) based on whatapeits optimum should be. In
particular, recall the SVD of the truy = UyXoV," and define for any matriX the projection
onto the space of all matrices with column space containég msPy, (X ) := UpU, X. Similarly
for the column suppof of the trueCy, define the projectiofPz, (X) to be the matrix that results
when all the columns iZ§ are set to 0.

Note thatU, andZ, above correspond to thteuth. Thus, with this notation, we would like the
optimum of (2) to satisf;PUo( L) = L, as this is nothing but the fact thathas recovered the true
subspace. Similarly, having sausfyPZO(C) ¢ means that we have succeeded in identifying the
outliers. The oracle problem arisesibyposingthese as additional constraints in (2). Formally:

Minimize: IL||« + A|Cll1,2

Oracle Problem: Subject to: M =L+ C; Py,(L)=L; Pz,(C)=C. (®)

Obtaining Dual Certificates for Outlier Pursuit : We now construct a dual certificate @f, C') to
establish Theorem 1. Let the SVD bfoeUXV . Itis easy to see that there exists an orthonormal

matrix V. € R"*" such that/V T = UOVT, whereU is the column space df,. Moreover, it is
easy to show thaP; (-) = Py, (-), Py (-) = Py, and hence the operat®; defined byl andV/,
obeysPy;(-) = Pu,(-) + Pi(-) — Pu, Pi(-). Let H be the matrix satisfying thaz (H) = 0 and
Vi € IO, I’:’l = él/|‘él|‘2
Define matrixG € R™*" as

—T

G2 PL,(V )P ) =S (VHIT )"

1€Zy

and constant £ ||G||. Further define matrice&; £ APy, (H), and

A, éPU&P13PV[1+Z(PVPZOPV)i}P (\H) = PPy I+Z (PyPz,Py) | Py Pyg (AH).

i=1 i=1

Then we can define the dual certificate for strict optimalitthe pair(]i, C‘).

. S (1-c)? (1-9)/5= 1—c
Proposition 2. If ¢ < 1, 5 < =5, and \/H(kc—\/%m«) <A< eEovee

UOVT +AH — Ay — A, strictly satisfies Condition (7), i.e., it is the dual cedite.

then@ £

Consider the (much) simpler case where the corrupted cauamm assumed to be orthogonal to
the column space of, which we seek to recover. Indeed, in that setting, whéye= vV =

V, we automatically satisfy the conditidz, () Py, = {0}. In the general case, we require the
conditionc < 1 to recover the same property. Moreover, considering thactiumns ofH are
either zero, or defined as normalizations of the columns dfixn@ (i.e., normalizations of outliers),
thatPy, (H) = Py, (H) = Pr,(H) = 0, is immediate, as is the condition thag, (UyV,') = 0

For the general, non-orthogonal case, however, we reduérenatrices\; and A, to obtain these
equalities, and the rest of the dual certificate propertieshe full version [26] we show in detail
how these ideas and the oracle problem, are used to cortsteudtal certificaté). Extending these
ideas, we then quickly obtain the proof for the noisy case.



5 Implementation issue and numerical experiments

Solving nuclear-norm minimizations naively requires us@eneral purpose SDP solvers, which
unfortunately still have questionable scaling capakditilnstead, we use tipeoximal gradient al-
gorithms[27], a.k.a., Singular Value Thresholding [28] to solve [@utPursuit. The algorithm con-
verges with a rate ab(k~—2) wherek is the number of iterations, and in each iteration, it inesha
singular value decomposition and thresholding, therefequiring significantly less computational
time than interior point methods.

Our first experiment investigates the phase-transitiopenty of Outlier Pursuit, using randomly
generated synthetic data. Fix= p = 400. For different- and number of outliersn, we generated
matricesA € RP*" and B € R(™~7)*" where each entry is an independg¥it0, 1) random
variable, and then sdt* := A x BT (the “clean” part ofA/). Outliers,C* € RY"*? are generated
eitherneutrally, where each entry of™* is iid N(0,1), or adversaria] where every column is an
identical copy of a random Gaussian vector. Outlier Pussiiteeds i€’ € Pz, andL € Py Note
that if a lot of outliers span a same direction, it would bdiclifit to identify whether they are all
outliers, or just a new direction of the true space. Indeadhs setup is order-wise worst, as we
proved in the full version [26] a matching lower bound is &sieid when all outliers are identical.

(a) Random Outlier (b) Identical Outlier (c) Noisy Outlieet2ction

s$=20, =20,
identical outlier ~ randpm outlier
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/\\\
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Figure 1: Complete Observation: Results averaged oveiidl®.tr

Figure 1 shows the phase transition property. We represeoéss in gray scale, with white denoting
success, and black failure. When outliers are random (eeage) Outlier Pursuit succeeds even
whenr = 20 with 100 outliers. In the adversarial case, we observe aeptrassition: Outlier
Pursuit succeeds whenx ~ is small, and fails otherwise, consistent with our theopyisdictions.
We then fixr = yn = 5 and examine the outlier identification ability of OutliermBuit with noisy
observations. We scale each outlier so that/theistance of the outlier to the span of true samples
equals a pre-determined valsieEach true sample is thus corrupted with a Gaussian randotarve
with an/, magnituder. We perform (noiseless) Outlier Pursuit on this noisy obeston matrix, and
claim that the algorithm successfully identifies outliéfsi the resulting” matrix, || ;|2 < [|Cill2
forall j ¢ Z andi € Z, i.e., there exists a threshold value to separate out oaithégure 1 (c) shows
the result: whewr /s < 0.3 for the identical outlier case, and s < 0.7 for the random outlier case,
Outlier Pursuit correctly identifies the outliers.

We further study the case of decomposivigunder incomplete observation, which is motivated by
robust collaborative filteringwe generaté/ as before, but only observe each entry with a given
probability (independently). Lettin@ be the set of observed entries, we solve

Minimize: || L||« + M|C|l1,2; Subjectto: Pq(L + C) = Pa(M). 9)

The same success condition is used. Figure 2 shows a verygangmesult: the successful decom-
position rate under incomplete observation is close to dmeptete observation case even when only
30% of entries are observed. Given this empirical result, anaatlirection of future research is to
understand theoretical guarantee of (9) in the incomplesexwvation case.

Next we report some experiment results on the USPS digitskttaThe goal of this experiment is
to show that Outlier Pursuit can be used to identify anorsalighin the dataset. We use the data
from [29], and construct the observation matfik as containing the firs220 samples of digit “1”
and the lastt1 samples of “7”. The learning objective is to correctly idgnall the “7's”. Note
that throughout the experiment, label information is uilatée to the algorithm, i.e., there is no
training stage. Since the columns of digit “1” are not exattw rank, an exact decomposition
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Figure 2: Partial Observation.

is not possible. Hence, we use thenorm of each column in the resulting matrix to identify
the outliers: a largef; norm means that the sample is more likely to be an outlier —erg&sly,
we apply thresholding aftef’ is obtained. Figure 3(a) shows thg norm of each column of the
resultingC' matrix. We see that all “7's” are indeed identified. Howewen “1” samples (columns
71 and137) are also identified as outliers, due to the fact that thesesaamples are written in a way
that is different from the rest “1's” as showed in Figure 4.dénthe same setup, we also simulate
the case where onl§0% of entries are observed. As Figure 3 (b) and (c) show, simdsnlts as
that of the complete observation case are obtained, ilétyal“7’s” and also “1's” No 71, No 177
are identified.

(a) Complete Observation (b) Partial Obs. (one run) (c)iddadbs. (average)

1, norm of C.

2 i
1, norm of C.
2 i
1, norm of C.
2 i

Figure 3: Outlyingnesss norm of C;.

“1” “r” No71 Nol177

Figure 4: Typical “1”, “7” and abnormal “1".

6 Conclusion and Future Direction

This paper considers robust PCA from a matrix decomposioproach, and develops the algorithm
Outlier Pursuit. Under some mild conditions, we show thatli@uPursuit can exactly recover the
column support, and exactly identify outliers. This regslhew, differing both from results in
Robust PCA, and also from results using nuclear-norm agpesafor matrix completion and matrix
reconstruction. One central innovation we introduce isube of an oracle problem. Whenever the
recovery concept (in this case, column space) does not elyigorrespond to a single matrix (we
believe many, if not most cases of interest, will fall und@s tdescription), the use of such a tool
will be quite useful. Immediate goals for future work inckudonsidering specific applications, in
particular, robust collaborative filtering (here, the gisab decompose a partially observed column-
corrupted matrix) and also obtaining tight bounds for @utidentification in the noisy case.
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