
Robust PCA via Outlier Pursuit

Huan Xu
Electrical and Computer Engineering

University of Texas at Austin
huan.xu@mail.utexas.edu

Constantine Caramanis
Electrical and Computer Engineering

University of Texas at Austin
cmcaram@ece.utexas.edu

Sujay Sanghavi
Electrical and Computer Engineering

University of Texas at Austin
sanghavi@mail.utexas.edu

Abstract

Singular Value Decomposition (and Principal Component Analysis) is one of the
most widely used techniques for dimensionality reduction:successful and effi-
ciently computable, it is nevertheless plagued by a well-known, well-documented
sensitivity to outliers. Recent work has considered the setting where each point
has a few arbitrarily corrupted components. Yet, in applications of SVD or PCA
such as robust collaborative filtering or bioinformatics, malicious agents, defec-
tive genes, or simply corrupted or contaminated experiments may effectively yield
entire points that are completely corrupted.
We present an efficient convex optimization-based algorithm we call Outlier Pur-
suit, that under some mild assumptions on the uncorrupted points (satisfied, e.g.,
by the standard generative assumption in PCA problems) recovers theexactopti-
mal low-dimensional subspace, and identifies the corruptedpoints. Such identi-
fication of corrupted points that do not conform to the low-dimensional approxi-
mation, is of paramount interest in bioinformatics and financial applications, and
beyond. Our techniques involve matrix decomposition usingnuclear norm min-
imization, however, our results, setup, and approach, necessarily differ consider-
ably from the existing line of work in matrix completion and matrix decompo-
sition, since we develop an approach to recover the correctcolumn spaceof the
uncorrupted matrix, rather than the exact matrix itself.

1 Introduction

This paper is about the following problem: suppose we are given a largedata matrixM , and we
know it can be decomposed as

M = L0 + C0,

whereL0 is a low-rank matrix, andC0 is non-zero in only a fraction of the columns. Aside from
these broad restrictions, both components are arbitrary. In particular we do not know the rank (or
the row/column space) ofL0, or the number and positions of the non-zero columns ofC0. Can we
recover the column-space of the low-rank matrixL0, and the identities of the non-zero columns of
C0, exactlyand efficiently?

We are primarily motivated by Principal Component Analysis(PCA), arguably the most widely
used technique for dimensionality reduction in statistical data analysis. The canonical PCA prob-
lem [1], seeks to find the best (in the least-square-error sense) low-dimensional subspace approx-
imation to high-dimensional points. Using the Singular Value Decomposition (SVD), PCA finds
the lower-dimensional approximating subspace by forming alow-rank approximation to the data
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matrix, formed by considering each point as a column; the output of PCA is the (low-dimensional)
column space of this low-rank approximation.

It is well known (e.g., [2–4]) that standard PCA is extremelyfragile to the presence ofoutliers: even
a single corrupted point can arbitrarily alter the quality of the approximation. Such non-probabilistic
or persistent data corruption may stem from sensor failures, malicious tampering, or the simple fact
that some of the available data may not conform to the presumed low-dimensional source / model.
In terms of the data matrix, this means that most of the columnvectors will lie in a low-dimensional
space – and hence the corresponding matrixL0 will be low-rank – while the remaining columns will
be outliers – corresponding to the column-sparse matrixC. The natural question in this setting is to
ask if we can still (exactly or near-exactly) recover the column space of the uncorrupted points, and
the identities of the outliers. This is precisely our problem.

Recent years have seen a lot of work on both robust PCA [3, 5–12], and on the use of convex
optimization for recovering low-dimensional structure [4, 13–15]. Our work lies at the intersection
of these two fields, but has several significant differences from work in either space. We compare
and relate our work to existing literature, and expand on thedifferences, in Section 3.3.

2 Problem Setup

The precise PCA with outlier problem that we consider is as follows: we are givenn points inp-
dimensional space. A fraction1−γ of the points lie on ar-dimensionaltruesubspace of the ambient
R

p, while the remainingγn points arearbitrarily located – we call these outliers/corrupted points.
We do not have any prior information about the true subspace or its dimensionr. Given the set of
points, we would like to learn(a) the true subspace and(b) the identities of the outliers.

As is common practice, we collate the points into ap × n data matrixM , each of whose columns
is one of the points, and each of whose rows is one of thep coordinates. It is then clear that the data
matrix can be decomposed as

M = L0 + C0.

HereL0 is the matrix corresponding to the non-outliers; thusrank(L0) = r. Consider its Singular
Value Decomposition (SVD)

L0 = U0Σ0V
⊤
0 . (1)

Thus it is clear that the columns ofU0 form an orthonormal basis for ther-dimensional true sub-
space. Also note that at most(1 − γ)n of the columns ofL0 are non-zero (the rest correspond to
the outliers).C0 is the matrix corresponding to the non-outliers; we will denote the set of non-zero
columns ofC0 by I0, with |I0| = γn. These non-zero columns are completely arbitrary.

With this notation, out intent is toexactlyrecover the column space ofL0, and the set of outliersI0.
Clearly, this is not always going to be possible (regardlessof the algorithm used) and thus we need
to impose a few additional assumptions. We develop these in Section 2.1 below.

We are also interested in the noisy case, where

M = L0 + C0 + N,

andN corresponds to any additional noise. In this case we are interested in approximate identifica-
tion of both the true subspace and the outliers.

2.1 Incoherence: When does exact recovery make sense?

In general, our objective of splitting a low-rank matrix from a column-sparse one is not always a well
defined one. As an extreme example, consider the case where the data matrixM is non-zero in only
one column. Such a matrix is both low-rank and column-sparse, thus the problem is unidentifiable.
To make the problem meaningful, we need to impose that the low-rank matrixL0 cannot itself be
column-sparse as well. This is done via the followingincoherence condition.

Definition: A matrix L ∈ R
p×n with SVD as in (1), and(1 − γ)n of whose columns are non-zero,

is said to becolumn-incoherentwith parameterµ if

max
i

‖V ⊤
ei‖2 ≤ µr

(1 − γ)n
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where{ei} are the coordinate unit vectors.

Thus if V has a column aligned with a coordinate axis, thenµ = (1 − γ)n/r. Similarly, if V is
perfectly incoherent (e.g. ifr = 1 and every non-zero entry ofV has magnitude1/

√

(1 − γ)n)
thenµ = 1.

In the standard PCA setup, if the points are generated by somelow-dimensional isometric Gaussian
distribution, then with high probability, one will haveµ = O(max(1, log(n)/r)) [16]. Alternatively,
if the points are generated by a uniform distribution over aboundedset, thenµ = Θ(1).

A small incoherence parameterµ essentially enforces that the matrixL0 will have column support
that is spread out. Note that this is quite natural from the application perspective. Indeed, if the left
hand side is as big as 1, it essentially means that one of the directions of the column space which we
wish to recover, is defined by only a single observation. Given the regime of a constant fraction of
arbitrarily chosenandarbitrarily corruptedpoints, such a setting is not meaningful. Indeed, having
a small incoherenceµ is an assumption made in all methods based on nuclear norm minimization
up to date [4,15–17].

We would like to identify the outliers, which can be arbitrary. However, clearly an “outlier” point
that lies in the true subspace is a meaningless concept. Thus, in matrix terms, we require that every
column ofC0 does not lie in the column space ofL0.

The parametersµ andγ are not required for the execution of the algorithm, anddo not need to be
known a priori. They only arise in the analysis of our algorithm’s performance.

Other Notation and Preliminaries: Capital letters such asA are used to represent matrices, and
accordingly,Ai denotes theith column vector. LettersU , V , I and their variants (complements,
subscripts, etc.) are reserved for column space, row space and column support respectively. There
are four associated projection operators we use throughout. The projection onto the column space,
U , is denoted byPU and given byPU (A) = UU⊤A, and similarly for the row-spacePV (A) =
AV V ⊤. The matrixPI(A) is obtained fromA by setting columnAi to zero for alli 6∈ I. Finally,
PT is the projection to the space spanned byU andV , and given byPT (·) = PU (·) + PV (·) −
PUPV (·). Note thatPT depends onU andV , and we suppress this notation wherever it is clear
whichU andV we are using. The complementary operators,PU⊥ ,PV ⊥ , PT⊥ andPIc are defined
as usual. The same notation is also used to represent a subspace of matrices: e.g., we writeA ∈ PU

for any matrixA that satisfiesPU (A) = A. Five matrix norms are used:‖A‖∗ is the nuclear norm,
‖A‖ is the spectral norm,‖A‖1,2 is the sum ofℓ2 norm of the columnsAi, ‖A‖∞,2 is the largest
ℓ2 norm of the columns, and‖A‖F is the Frobenius norm. The only vector norm used is‖ · ‖2, the
ℓ2 norm. Depending on the context,I is either the unit matrix, or the identity operator;ei is theith

base vector. The SVD ofL0 is U0Σ0V
⊤
0 . The rank ofL0 is denoted asr, and we haveγ , |I0|/n,

i.e., the fraction of outliers.

3 Main Results and Consequences

While we do not recover the matrixL0, we show that the goal of PCA can be attained: even under
our strong corruption model, with a constant fraction of points corrupted, we show that we can –
under very weak assumptions –exactlyrecover both the column space ofL0 (i.e the low-dimensional
space the uncorrupted points lie on) and the column support of C0 (i.e. the identities of the outliers),
from M . If there is additional noise corrupting the data matrix, i.e. if we haveM = L0 + C0 + N ,
a natural variant of our approach finds a good approximation.

3.1 Algorithm

Given data matrixM , our algorithm, calledOutlier Pursuit, generates(a) a matrixÛ , with orthonor-
mal rows, that spans the low-dimensional true subspace we want to recover, and(b) a set of column
indicesÎ corresponding to the outlier points. To ensure success, onechoice of the tuning parameter
is λ = 3

7
√

γn
, as Theorem 1 below suggests.

While in the noiseless case there are simple algorithms withsimilar performance, the benefit of
the algorithm, and of the analysis, is extension to more realistic and interesting situations where in
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Algorithm 1 Outlier Pursuit

Find (L̂, Ĉ), the optimum of the following convex optimization program.

Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: M = L + C
(2)

Compute SVDL̂ = U1Σ1V
⊤
1 and output̂U = U1.

Output the set of non-zero columns ofĈ, i.e. Î = {j : ĉij 6= 0 for somei}.

addition to gross corruption of some samples, there is additional noise. Adapting the Outlier Pursuit
algorithm, we have the following variant for the noisy case.

Noisy Outlier Pursuit:
Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: ‖M − (L + C)‖F ≤ ε
(3)

Outlier Pursuit (and its noisy variant) is a convex surrogate for the following natural (but combina-
torial and intractable) first approach to the recovery problem:

Minimize: rank(L) + λ‖C‖0,c

Subject to: M = L + C
(4)

where‖ · ‖0,c stands for the number of non-zero columns of a matrix.

3.2 Performance

We show that under rather weak assumptions, Outlier Pursuitexactly recovers the column space of
the low-rank matrixL0, and the identities of the non-zero columns of outlier matrix C0. The formal
statement appears below.

Theorem 1 (Noiseless Case).Suppose we observeM = L0 + C0, whereL0 has rankr and inco-
herence parameterµ. Suppose further thatC0 is supported on at mostγn columns. Any output to
Outlier Pursuit recovers the column space exactly, and identifies exactly the indices of columns cor-
responding to outliers not lying in the recovered column space, as long as the fraction of corrupted
points,γ, satisfies

γ

1 − γ
≤ c1

µr
, (5)

wherec1 = 9
121 . This can be achieved by setting the parameterλ in outlier pursuit to be 3

7
√

γn
–

indeed it holds for anyλ in a specific range which we provide below.

For the case where in addition to the corrupted points, we have noisy observations,̃M = M + W ,
we have the following result.

Theorem 2 (Noisy Case).Suppose we observẽM = M + N = L0 + C0 + N , where
γ

1 − γ
≤ c2

µr
(6)

with c2 = 9
1024 , and‖N‖F ≤ ε. Let the output of Noisy Outlier Pursuit beL′, C′. Then there exists

L̃, C̃ such thatM = L̃+ C̃, L̃ has the correct column space, andC̃ the correct column support, and

‖L′ − L̃‖F ≤ 10
√

nε; ‖C′ − C̃‖F ≤ 9
√

nε; .

The conditions in this theorem are essentially tight in the following scaling sense (i.e., up to universal
constants). If there is no additional structure imposed, beyond what we have stated above, then up
to scaling, in the noiseless case, Outlier Pursuit can recover from as many outliers (i.e., the same
fraction) as any possible algorithm with arbitrary complexity. In particular, it is easy to see that if
the rank of the matrixL0 is r, and the fraction of outliers satisfiesγ ≥ 1/(r + 1), then the problem
is not identifiable, i.e., no algorithm can separate authentic and corrupted points.1

1Note that this is no longer true in the presence of stronger assumptions, e.g., isometric distribution, on the
authentic points [12].
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3.3 Related Work

Robust PCA has a long history (e.g., [3, 5–11]). Each of thesealgorithms either performs standard
PCA on a robust estimate of the covariance matrix, or finds directions that maximize a robust es-
timate of the variance of the projected data. These algorithms seek toapproximatelyrecover the
column space, and moreover, no existing approach attempts to identify the set of outliers. This out-
lier identification, while outside the scope of traditionalPCA algorithms, is important in a variety of
applications such as finance, bio-informatics, and more.

Many existing robust PCA algorithms suffer two pitfalls: performance degradation with dimen-
sion increase, and computational intractability. To wit, [18] shows several robust PCA algorithms
including M-estimator [19], Convex Peeling [20], Ellipsoidal Peeling [21], Classical Outlier Rejec-
tion [22], Iterative Deletion [23] and Iterative Trimming [24] have breakdown points proportional to
the inverse of dimensionality, and hence are useless in the high dimensional regime we consider.

Algorithms with non-diminishing breakdown point, such as Projection-Pursuit [25] are non-convex
or even combinatorial, and hence computationally intractable (NP-hard) as the size of the problem
scales. In contrast to these, the performance of Outlier Pursuit does not depend onp, and can be
solved in polynomial time.

Algorithms based on nuclear norm minimization to recover low rank matrices are now standard,
since the seminal paper [14]. Recent work [4,15] has taken the nuclear norm minimization approach
to the decomposition of a low-rank matrix and an overall sparse matrix. At a high level, these papers
are close in spirit to ours. However, there are critical differences in the problem setup, the results, and
in key analysis techniques. First, these algorithms fail inour setting as they cannot handle outliers –
entire columns where every entry is corrupted. Second, froma technical and proof perspective, all
the above works investigateexactsignal recovery – the intended outcome is known ahead of time,
and one just needs to investigate the conditions needed for success. In our setting however, the
convex optimization cannot recoverL0 itself exactly. This requires an auxiliary “oracle problem” as
well as different analysis techniques on which we elaboratebelow.

4 Proof Outline and Comments

In this section we provide an outline of the proof of Theorem 1. The full proofs of all theorems
appear in a full version available online [26]. The proof follows three main steps

1. Identify the first-order necessary and sufficient conditions, for any pair(L′, C′) to be the
optimum of the convex program (2).

2. Consider a candidate pair(L̂, Ĉ) that is the optimum of an alternate optimization problem,
often called the “oracle problem”. The oracle problem ensures that the pair(L̂, Ĉ) has the
desired column space and column support, respectively.

3. Show that this(L̂, Ĉ) is the optimum of Outlier Pursuit.

We remark that the aim of the matrix recovery papers [4, 15, 16] was exact recovery of theentire
matrix, and thus the optimality conditions required are clear. Since our setup precludes exact recov-
ery of L0 andC0, 2 our optimality conditions must imply the optimality for Outlier Pursuit of an
as-of-yet-undetermined pair(L̂, Ĉ), the solution to the oracle problem. We now elaborate.

Optimality Conditions : We now specify the conditions a candidate optimum needs to satisfy; these
arise from the standard subgradient conditions for the norms involved. Suppose the pair(L′, C′) is a
feasible point of (2), i.e. we have thatL′ +C′ = M . Let the SVD ofL′ be given byL′ = U ′Σ′V ′⊤.
For any matrixX , definePT ′(X) := U ′U ′⊤X + XV ′V ′⊤ − U ′U ′⊤XV ′V ′⊤, the projection ofX
onto matrices that share the same column space or row space with L′.

Let I ′ be the set of non-zero columns ofC′, and letH ′ be the column-normalized version ofC′.
That is, columnH ′

i =
C′

i

‖C′

i
‖2

for all i ∈ I′, andH ′
i = 0 for all i /∈ I′. Finally, for any matrixX let

PI′(X) denote the matrix with all columns inI ′c set to 0, and the columns inI ′ left as-is.

2The optimumL̂ of (2) will be non-zero in every column ofC0 that is notorthogonalto L0’s column space.
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Proposition 1. With notation as above,L′, C′ is an optimum of the Outlier Pursuit progam (2) if
there exists aQ such that

PT ′(Q) = U ′V ′ ‖Q − PT ′(Q)‖ ≤ 1
PI′(Q) = λH ′ ‖Q − PI′(Q)‖∞,2 ≤ λ.

(7)

Further, if both inequalities above are strict, dubbedQ strictly satisfies (7), then(L′, C′) is the
unique optimum.

Note that here‖ · ‖ is the spectral norm (i.e. largest singular value) and‖ · ‖∞,2 is the magnitude –
i.e. ℓ2 norm – of the column with the largest magnitude.

Oracle Problem: We develop our candidate solution(L̂, Ĉ) by considering the alternate optimiza-
tion problem where we add constraints to (2) based on what wehopeits optimum should be. In
particular, recall the SVD of the trueL0 = U0Σ0V

⊤
0 and define for any matrixX the projection

onto the space of all matrices with column space contained inU0 asPU0
(X) := U0U

⊤
0 X . Similarly

for the column supportI0 of the trueC0, define the projectionPI0
(X) to be the matrix that results

when all the columns inIc
0 are set to 0.

Note thatU0 andI0 above correspond to thetruth. Thus, with this notation, we would like the
optimum of (2) to satisfyPU0

(L̂) = L̂, as this is nothing but the fact thatL̂ has recovered the true
subspace. Similarly, havinĝC satisfyPI0

(Ĉ) = Ĉ means that we have succeeded in identifying the
outliers. The oracle problem arises byimposingthese as additional constraints in (2). Formally:

Oracle Problem:
Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: M = L + C; PU0
(L) = L; PI0

(C) = C.
(8)

Obtaining Dual Certificates for Outlier Pursuit : We now construct a dual certificate of(L̂, Ĉ) to
establish Theorem 1. Let the SVD ofL̂ beÛΣ̂V̂ ⊤. It is easy to see that there exists an orthonormal

matrix V ∈ R
r×n such thatÛ V̂ ⊤ = U0V

⊤
, whereU0 is the column space ofL0. Moreover, it is

easy to show thatP
Û
(·) = PU0

(·), P
V̂

(·) = PV , and hence the operatorP
T̂

defined byÛ andV̂ ,
obeysP

T̂
(·) = PU0

(·) + PV (·) − PU0
PV (·). Let Ĥ be the matrix satisfying thatPIc

0
(Ĥ) = 0 and

∀i ∈ I0, Ĥi = Ĉi/‖Ĉi‖2.

Define matrixG ∈ R
r×r as

G , PI0
(V

⊤
)(PI0

(V
⊤

))⊤ =
∑

i∈I0

[(V
⊤

)i][(V
⊤

)i]
⊤,

and constantc , ‖G‖. Further define matrices∆1 , λPU0
(Ĥ), and

∆2 , PU⊥

0

PIc
0
PV

[

I+

∞
∑

i=1

(PV PI0
PV )i

]

PV (λĤ) = PIc
0
PV

[

I+

∞
∑

i=1

(PV PI0
PV )i

]

PV PU⊥

0

(λĤ).

Then we can define the dual certificate for strict optimality of the pair(L̂, Ĉ).

Proposition 2. If c < 1, γ
1−γ

< (1−c)2

(3−c)2µr
, and

(1−c)
√

µr

1−γ√
n(1−c−

√
γ

1−γ
µr)

< λ < 1−c
(2−c)

√
nγ

, thenQ ,

U0V
⊤

+ λĤ − ∆1 − ∆2 strictly satisfies Condition (7), i.e., it is the dual certificate.

Consider the (much) simpler case where the corrupted columns are assumed to be orthogonal to
the column space ofL0 which we seek to recover. Indeed, in that setting, whereV0 = V̂ =
V , we automatically satisfy the conditionPI0

⋂PV0
= {0}. In the general case, we require the

conditionc < 1 to recover the same property. Moreover, considering that the columns ofH are
either zero, or defined as normalizations of the columns of matrix C (i.e., normalizations of outliers),
thatPU0

(H) = PV0
(H) = PT0

(H) = 0, is immediate, as is the condition thatPI0
(U0V

⊤
0 ) = 0.

For the general, non-orthogonal case, however, we require the matrices∆1 and∆2 to obtain these
equalities, and the rest of the dual certificate properties.In the full version [26] we show in detail
how these ideas and the oracle problem, are used to constructthe dual certificateQ. Extending these
ideas, we then quickly obtain the proof for the noisy case.
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5 Implementation issue and numerical experiments

Solving nuclear-norm minimizations naively requires use of general purpose SDP solvers, which
unfortunately still have questionable scaling capabilities. Instead, we use theproximal gradient al-
gorithms[27], a.k.a., Singular Value Thresholding [28] to solve Outlier Pursuit. The algorithm con-
verges with a rate ofO(k−2) wherek is the number of iterations, and in each iteration, it involves a
singular value decomposition and thresholding, therefore, requiring significantly less computational
time than interior point methods.

Our first experiment investigates the phase-transition property of Outlier Pursuit, using randomly
generated synthetic data. Fixn = p = 400. For differentr and number of outliersγn, we generated
matricesA ∈ R

p×r andB ∈ R
(n−γn)×r where each entry is an independentN (0, 1) random

variable, and then setL∗ := A × B⊤ (the “clean” part ofM ). Outliers,C∗ ∈ R
γn×p are generated

eitherneutrally, where each entry ofC∗ is iid N (0, 1), or adversarial, where every column is an
identical copy of a random Gaussian vector. Outlier Pursuitsucceeds if̂C ∈ PI , andL̂ ∈ PU . Note
that if a lot of outliers span a same direction, it would be difficult to identify whether they are all
outliers, or just a new direction of the true space. Indeed, such a setup is order-wise worst, as we
proved in the full version [26] a matching lower bound is achieved when all outliers are identical.

(a) Random Outlier (b) Identical Outlier (c) Noisy Outlier Detection
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Figure 1: Complete Observation: Results averaged over 10 trials.

Figure 1 shows the phase transition property. We represent success in gray scale, with white denoting
success, and black failure. When outliers are random (easier case) Outlier Pursuit succeeds even
whenr = 20 with 100 outliers. In the adversarial case, we observe a phase transition: Outlier
Pursuit succeeds whenr × γ is small, and fails otherwise, consistent with our theory’spredictions.
We then fixr = γn = 5 and examine the outlier identification ability of Outlier Pursuit with noisy
observations. We scale each outlier so that theℓ2 distance of the outlier to the span of true samples
equals a pre-determined values. Each true sample is thus corrupted with a Gaussian random vector
with anℓ2 magnitudeσ. We perform (noiseless) Outlier Pursuit on this noisy observation matrix, and
claim that the algorithm successfully identifies outliers if for the resultingĈ matrix,‖Ĉj‖2 < ‖Ĉi‖2

for all j 6∈ I andi ∈ I, i.e., there exists a threshold value to separate out outliers. Figure 1 (c) shows
the result: whenσ/s ≤ 0.3 for the identical outlier case, andσ/s ≤ 0.7 for the random outlier case,
Outlier Pursuit correctly identifies the outliers.

We further study the case of decomposingM under incomplete observation, which is motivated by
robust collaborative filtering: we generateM as before, but only observe each entry with a given
probability (independently). LettingΩ be the set of observed entries, we solve

Minimize: ‖L‖∗ + λ‖C‖1,2; Subject to: PΩ(L + C) = PΩ(M). (9)

The same success condition is used. Figure 2 shows a very promising result: the successful decom-
position rate under incomplete observation is close to the complete observation case even when only
30% of entries are observed. Given this empirical result, a natural direction of future research is to
understand theoretical guarantee of (9) in the incomplete observation case.

Next we report some experiment results on the USPS digit data-set. The goal of this experiment is
to show that Outlier Pursuit can be used to identify anomalies within the dataset. We use the data
from [29], and construct the observation matrixM as containing the first220 samples of digit “1”
and the last11 samples of “7”. The learning objective is to correctly identify all the “7’s”. Note
that throughout the experiment, label information is unavailable to the algorithm, i.e., there is no
training stage. Since the columns of digit “1” are not exactly low rank, an exact decomposition
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(a)30% entries observed (b)80% entries observed (c) Success ratevsObserve ratio
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Figure 2: Partial Observation.

is not possible. Hence, we use theℓ2 norm of each column in the resultingC matrix to identify
the outliers: a largerℓ2 norm means that the sample is more likely to be an outlier — essentially,
we apply thresholding afterC is obtained. Figure 3(a) shows theℓ2 norm of each column of the
resultingC matrix. We see that all “7’s” are indeed identified. However,two “1” samples (columns
71 and137) are also identified as outliers, due to the fact that these two samples are written in a way
that is different from the rest “1’s” as showed in Figure 4. Under the same setup, we also simulate
the case where only80% of entries are observed. As Figure 3 (b) and (c) show, similarresults as
that of the complete observation case are obtained, i.e., all true “7’s” and also “1’s” No 71, No 177
are identified.

(a) Complete Observation (b) Partial Obs. (one run) (c) Partial Obs. (average)
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Figure 3: Outlyingness:ℓ2 norm ofCi.

“1” “7” No 71 No 177

Figure 4: Typical “1”, “7” and abnormal “1”.

6 Conclusion and Future Direction

This paper considers robust PCA from a matrix decompositionapproach, and develops the algorithm
Outlier Pursuit. Under some mild conditions, we show that Outlier Pursuit can exactly recover the
column support, and exactly identify outliers. This resultis new, differing both from results in
Robust PCA, and also from results using nuclear-norm approaches for matrix completion and matrix
reconstruction. One central innovation we introduce is theuse of an oracle problem. Whenever the
recovery concept (in this case, column space) does not uniquely correspond to a single matrix (we
believe many, if not most cases of interest, will fall under this description), the use of such a tool
will be quite useful. Immediate goals for future work include considering specific applications, in
particular, robust collaborative filtering (here, the goalis to decompose a partially observed column-
corrupted matrix) and also obtaining tight bounds for outlier identification in the noisy case.
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