NIPS Proceedingsβ

Penalized Principal Component Regression on Graphs for Analysis of Subnetworks

Part of: Advances in Neural Information Processing Systems 23 (NIPS 2010)

[PDF] [BibTeX]



Network models are widely used to capture interactions among component of complex systems, such as social and biological. To understand their behavior, it is often necessary to analyze functionally related components of the system, corresponding to subsystems. Therefore, the analysis of subnetworks may provide additional insight into the behavior of the system, not evident from individual components. We propose a novel approach for incorporating available network information into the analysis of arbitrary subnetworks. The proposed method offers an efficient dimension reduction strategy using Laplacian eigenmaps with Neumann boundary conditions, and provides a flexible inference framework for analysis of subnetworks, based on a group-penalized principal component regression model on graphs. Asymptotic properties of the proposed inference method, as well as the choice of the tuning parameter for control of the false positive rate are discussed in high dimensional settings. The performance of the proposed methodology is illustrated using simulated and real data examples from biology.