NIPS Proceedingsβ

Synergies in learning words and their referents

Part of: Advances in Neural Information Processing Systems 23 (NIPS 2010)

[PDF] [BibTeX]



This paper presents Bayesian non-parametric models that simultaneously learn to segment words from phoneme strings and learn the referents of some of those words, and shows that there is a synergistic interaction in the acquisition of these two kinds of linguistic information. The models themselves are novel kinds of Adaptor Grammars that are an extension of an embedding of topic models into PCFGs. These models simultaneously segment phoneme sequences into words and learn the relationship between non-linguistic objects to the words that refer to them. We show (i) that modelling inter-word dependencies not only improves the accuracy of the word segmentation but also of word-object relationships, and (ii) that a model that simultaneously learns word-object relationships and word segmentation segments more accurately than one that just learns word segmentation on its own. We argue that these results support an interactive view of language acquisition that can take advantage of synergies such as these.