
Bootstrapping from Game Tree Search

Joel Veness
University of NSW and NICTA
Sydney, NSW, Australia 2052
joelv@cse.unsw.edu.au

David Silver
University of Alberta

Edmonton, AB Canada T6G2E8
silver@cs.ualberta.ca

William Uther
NICTA and the University of NSW

Sydney, NSW, Australia 2052
William.Uther@nicta.com.au

Alan Blair
University of NSW and NICTA
Sydney, NSW, Australia 2052
blair@cse.unsw.edu.au

Abstract

In this paper we introduce a new algorithm for updating the parameters of a heuris-
tic evaluation function, by updating the heuristic towards the values computed by
an alpha-beta search. Our algorithm differs from previous approaches to learning
from search, such as Samuel’s checkers player and the TD-Leaf algorithm, in two
key ways. First, we update all nodes in the search tree, rather than a single node.
Second, we use the outcome of a deep search, instead of the outcome of a subse-
quent search, as the training signal for the evaluation function. We implemented
our algorithm in a chess program Meep, using a linear heuristic function. After
initialising its weight vector to small random values, Meep was able to learn high
quality weights from self-play alone. When tested online against human oppo-
nents, Meep played at a master level, the best performance of any chess program
with a heuristic learned entirely from self-play.

1 Introduction

The idea of search bootstrapping is to adjust the parameters of a heuristic evaluation function to-
wards the value of a deep search. The motivation for this approach comes from the recursive nature
of tree search: if the heuristic can be adjusted to match the value of a deep search of depth D, then
a search of depth k with the new heuristic would be equivalent to a search of depth k + D with the
old heuristic.

Deterministic, two-player games such as chess provide an ideal test-bed for search bootstrapping.
The intricate tactics require a significant level of search to provide an accurate position evaluation;
learning without search has produced little success in these domains. Much of the prior work in
learning from search has been performed in chess or similar two-player games, allowing for clear
comparisons with existing methods.

Samuel (1959) first introduced the idea of search bootstrapping in his seminal checkers player. In
Samuel’s work the heuristic function was updated towards the value of a minimax search in a sub-
sequent position, after black and white had each played one move. His ideas were later extended
by Baxter et al. (1998) in their chess program Knightcap. In their algorithm, TD-Leaf, the heuristic
function is adjusted so that the leaf node of the principal variation produced by an alpha-beta search
is moved towards the value of an alpha-beta search at a subsequent time step.

Samuel’s approach and TD-Leaf suffer from three main drawbacks. First, they only update one
node after each search, which discards most of the information contained in the search tree. Second,
their updates are based purely on positions that have actually occurred in the game, or which lie
on the computed line of best play. These positions may not be representative of the wide variety
of positions that must be evaluated by a search based program; many of the positions occurring in

1



time = t+1time = t

TD-Leaf

TD-Root

TD

time = t time = t+1

RootStrap(minimax) and TreeStrap(minimax)

TreeStrap(minimax) only

Figure 1: Left: TD, TD-Root and TD-Leaf backups. Right: RootStrap(minimax) and TreeStrap(minimax).

large search trees come from sequences of unnatural moves that deviate significantly from sensible
play. Third, the target search is performed at a subsequent time-step, after a real move and response
have been played. Thus, the learning target is only accurate when both the player and opponent
are already strong. In practice, these methods can struggle to learn effectively from self-play alone.
Work-arounds exist, such as initializing a subset of the weights to expert provided values, or by
attempting to disable learning once an opponent has blundered, but these techniques are somewhat
unsatisfactory if we have poor initial domain knowledge.

We introduce a new framework for bootstrapping from game tree search that differs from prior
work in two key respects. First, all nodes in the search tree are updated towards the recursive
minimax values computed by a single depth limited search from the root position. This makes
full use of the information contained in the search tree. Furthermore, the updated positions are
more representative of the types of positions that need to be accurately evaluated by a search-based
player. Second, as the learning target is based on hypothetical minimax play, rather than positions
that occur at subsequent time steps, our methods are less sensitive to the opponent’s playing strength.
We applied our algorithms to learn a heuristic function for the game of chess, starting from random
initial weights and training entirely from self-play. When applied to an alpha-beta search, our chess
program learnt to play at a master level against human opposition.

2 Background

The minimax search algorithm exhaustively computes the minimax value to some depth D, using a
heuristic function Hθ(s) to evaluate non-terminal states at depth D, based on a parameter vector θ.
We use the notation V D

s0
(s) to denote the value of state s in a depth D minimax search from root

state s0. We define TD
s0

to be the set of states in the depth D search tree from root state s0. We define
the principal leaf, lD(s), to be the leaf state of the depth D principal variation from state s. We use
the notation θ← to indicate a backup that updates the heuristic function towards some target value.

Temporal difference (TD) learning uses a sample backup Hθ(st)
θ← Hθ(st+1) to update the esti-

mated value at one time-step towards the estimated value at the subsequent time-step (Sutton, 1988).
Although highly successful in stochastic domains such as Backgammon (Tesauro, 1994), direct TD
performs poorly in highly tactical domains. Without search or prior domain knowledge, the target
value is noisy and improvements to the value function are hard to distinguish. In the game of chess,
using a naive heuristic and no search, it is hard to find checkmate sequences, meaning that most
games are drawn.

The quality of the target value can be significantly improved by using a minimax backup to update
the heuristic towards the value of a minimax search. Samuel’s checkers player (Samuel, 1959) in-
troduced this idea, using an early form of bootstrapping from search that we call TD-Root. The
parameters of the heuristic function, θ, were adjusted towards the minimax search value at the next
complete time-step (see Figure 1), Hθ(st)

θ← V D
st+1

(st+1). This approach enabled Samuel’s check-

2



ers program to achieve human amateur level play. Unfortunately, Samuel’s approach was handi-
capped by tying his evaluation function to the material advantage, and not to the actual outcome
from the position.

The TD-Leaf algorithm (Baxter et al., 1998) updates the value of a minimax search at one time-
step towards the value of a minimax search at the subsequent time-step (see Figure 1). The pa-
rameters of the heuristic function are updated by gradient descent, using an update of the form
V D

st
(st)

θ← V D
st+1

(st+1). The root value of minimax search is not differentiable in the parame-
ters, as a small change in the heuristic value can result in the principal variation switching to a
completely different path through the tree. The TD-Leaf algorithm ignores these non-differentiable
boundaries by assuming that the principal variation remains unchanged, and follows the local gra-
dient given that variation. This is equivalent to updating the heuristic function of the principal leaf,
Hθ(lD(st))

θ← V D
st+1

(st+1). The chess program Knightcap achieved master-level play when trained
using TD-Leaf against a series of evenly matched human opposition, whose strength improved at
a similar rate to Knightcap’s. A similar algorithm was introduced contemporaneously by Beal and
Smith (1997), and was used to learn the material values of chess pieces. The world champion check-
ers program Chinook used TD-Leaf to learn an evaluation function that compared favorably to its
hand-tuned heuristic function (Schaeffer et al., 2001).

Both TD-Root and TD-Leaf are hybrid algorithms that combine a sample backup with a minimax
backup, updating the current value towards the search value at a subsequent time-step. Thus the
accuracy of the learning target depends both on the quality of the players, and on the quality of the
search. One consequence is that these learning algorithms are not robust to variations in the training
regime. In their experiments with the chess program Knightcap (Baxter et al., 1998), the authors
found that it was necessary to prune training examples in which the opponent blundered or made
an unpredictable move. In addition, the program was unable to learn effectively from games of
self-play, and required evenly matched opposition. Perhaps most significantly, the piece values were
initialised to human expert values; experiments starting from zero or random weights were unable
to exceed weak amateur level. Similarly, the experiments with TD-Leaf in Chinook also fixed the
important checker and king values to human expert values.

In addition, both Samuel’s approach and TD-Leaf only update one node of the search tree. This
does not make efficient use of the large tree of data, typically containing millions of values, that
is constructed by memory enhanced minimax search variants. Furthermore, the distribution of root
positions that are used to train the heuristic is very different from the distribution of positions that are
evaluated during search. This can lead to inaccurate evaluation of positions that occur infrequently
during real games but frequently within a large search tree; these anomalous values have a tendency
to propagate up through the search tree, ultimately affecting the choice of best move at the root.

In the following section, we develop an algorithm that attempts to address these shortcomings.

3 Minimax Search Bootstrapping

Our first algorithm, RootStrap(minimax), performs a minimax search from the current position st,
at every time-step t. The parameters are updated so as to move the heuristic value of the root node
towards the minimax search value, Hθ(st)

θ← V D
st

(st). We update the parameters by stochastic
gradient descent on the squared error between the heuristic value and the minimax search value. We
treat the minimax search value as a constant, to ensure that we move the heuristic towards the search
value, and not the other way around.

δt = V D
st

(st)−Hθ(st)

∆θ = −η

2
∇θδ

2
t = ηδt∇θHθ(st)

where η is a step-size constant. RootStrap(αβ) is equivalent to RootStrap(minimax), except it uses
the more efficient αβ-search algorithm to compute V D

st
(st).

For the remainder of this paper we consider heuristic functions that are computed by a linear com-
bination Hθ(s) = φ(s)T θ, where φ(s) is a vector of features of position s, and θ is a parameter
vector specifying the weight of each feature in the linear combination. Although simple, this form
of heuristic has already proven sufficient to achieve super-human performance in the games of Chess

3



Algorithm Backup

TD Hθ(st)
θ←Hθ(st+1)

TD-Root Hθ(st)
θ← V D

st+1(st+1)

TD-Leaf Hθ(l
D(st))

θ← V D
st+1(st+1)

RootStrap(minimax) Hθ(st)
θ← V D

st
(st)

TreeStrap(minimax) Hθ(s)
θ← V D

st
(s), ∀s ∈ T D

st

TreeStrap(αβ) Hθ(s)
θ← [bD

st
(s), aD

st
(s)],∀s ∈ T αβ

t

Table 1: Backups for various learning algorithms.

Algorithm 1 TreeStrap(minimax)

Randomly initialise θ
Initialise t ← 1, s1 ← start state
while st is not terminal do

V ← minimax(st,Hθ, D)
for s ∈ search tree do

δ ← V (s)−Hθ(s)
∆θ ← ∆θ + ηδφ(s)

end for
θ ← θ + ∆θ
Select at = argmax

a∈A
V (st ◦ a)

Execute move at, receive st+1

t ← t + 1
end while

Algorithm 2 DeltaFromTransTbl(s, d)

Initialise ∆θ ← ~0, t ← probe(s)
if t is null or depth(t) < d then

return ∆θ
end if
if lowerbound(t) > Hθ(s) then

∆θ ← ∆θ + η(lowerbound(t)−Hθ(s))∇Hθ(s)
end if
if upperbound(t) < Hθ(s) then

∆θ ← ∆θ + η(upperbound(t)−Hθ(s))∇Hθ(s)
end if
for s′ ∈ succ(s) do

∆θ ← DeltaFromTransTbl(s′)
end for
return ∆θ

(Campbell et al., 2002), Checkers (Schaeffer et al., 2001) and Othello (Buro, 1999). The gradient
descent update for RootStrap(minimax) then takes the particularly simple form ∆θt = ηδtφ(st).

Our second algorithm, TreeStrap(minimax), also performs a minimax search from the current po-
sition st. However, TreeStrap(minimax) updates all interior nodes within the search tree. The
parameters are updated, for each position s in the tree, towards the minimax search value of s,
Hθ(s)

θ← V D
st

(s),∀s ∈ TD
st

. This is again achieved by stochastic gradient descent,

δt(s) = V D
st

(s)−Hθ(s)

∆θ = −η

2
∇θ

∑

s∈T D
st

δt(s)
2 = η

∑

s∈T D
st

δt(s)φ(s)

The complete algorithm for TreeStrap(minimax) is described in Algorithm 1.

4 Alpha-Beta Search Bootstrapping

The concept of minimax search bootstrapping can be extended to αβ-search. Unlike minimax
search, alpha-beta does not compute an exact value for the majority of nodes in the search tree.
Instead, the search is cut off when the value of the node is sufficiently high or low that it can no
longer contribute to the principal variation. We consider a depth D alpha-beta search from root
position s0, and denote the upper and lower bounds computed for node s by aD

s0
(s) and bD

s0
(s) re-

spectively, so that bD
s0

(s) ≤ V D
s0

(s) ≤ aD
s0

(s). Only one bound applies in cut off nodes: in the case
of an alpha-cut we define bD

s0
(s) to be −∞, and in the case of a beta-cut we define aD

s0
(s) to be ∞.

If no cut off occurs then the bounds are exact, i.e. aD
s0

(s) = bD
s0

(s) = V D
s0

(s).

The bounded values computed by alpha-beta can be exploited by search bootstrapping, by using a
one-sided loss function. If the value from the heuristic evaluation is larger than the a-bound of the
deep search value, then it is reduced towards the a-bound, Hθ(s)

θ← aD
st

(s). Similarly, if the value
from the heuristic evaluation is smaller than the b-bound of the deep search value, then it is increased

4



towards the b-bound, Hθ(s)
θ← bD

st
(s). We implement this idea by gradient descent on the sum of

one-sided squared errors:

δa
t (s) =

{
aD

st
(s)−Hθ(s) if Hθ(s) > aD

st
(s)

0 otherwise

δb
t (s) =

{
bD
st

(s)−Hθ(s) if Hθ(s) < bD
st

(s)
0 otherwise

giving

∆θt =
η

2
∇θ

∑

s∈T
αβ
t

δa
t (s)2 + δb

t (s)
2 = η

∑

s∈T
αβ
t

(
δa

t (s) + δb
t (s)

)
φ(s)

where Tαβ
t is the set of nodes in the alpha-beta search tree at time t. We call this algorithm

TreeStrap(αβ), and note that the update for each node s is equivalent to the TreeStrap(minimax)
update when no cut-off occurs.

4.1 Updating Parameters in TreeStrap(αβ)

High performance αβ-search routines rely on transposition tables for move ordering, reducing the
size of the search space, and for caching previous search results (Schaeffer, 1989). A natural way
to compute ∆θ for TreeStrap(αβ) from a completed αβ-search is to recursively step through the
transposition table, summing any relevant bound information. We call this procedure DeltaFrom-
TransTbl, and give the pseudo-code for it in Algorithm 2.

DeltaFromTransTbl requires a standard transposition table implementation providing the following
routines:

• probe(s), which returns the transposition table entry associated with state s.
• depth(t), which returns the amount of search depth used to determine the bound estimates

stored in transposition table entry t.
• lowerbound(t), which returns the lower bound stored in transposition entry t.
• upperbound(t), which returns the upper bound stored in transposition entry t.

In addition, DeltaFromTransTbl requires a parameter d ≥ 1, that limits updates to ∆θ from transpo-
sition table entries based on a minimum of search depth of d. This can be used to control the number
of positions that contribute to ∆θ during a single update, or limit the computational overhead of the
procedure.

4.2 The TreeStrap(αβ) algorithm

The TreeStrap(αβ) algorithm can be obtained by two straightforward modifications to Algorithm 1.
First, the call to minimax(st,Hθ, D) must be replaced with a call to αβ-search(st, Hθ, D). Sec-
ondly, the inner loop computing ∆θ is replaced by invoking DeltaFromTransTbl(st).

5 Learning Chess Program

We implemented our learning algorithms in Meep, a modified version of the tournament chess engine
Bodo. For our experiments, the hand-crafted evaluation function of Bodo was removed and replaced
by a weighted linear combination of 1812 features. Given a position s, a feature vector φ(s) can be
constructed from the 1812 numeric values of each feature. The majority of these features are binary.
φ(s) is typically sparse, with approximately 100 features active in any given position. Five well-
known, chess specific feature construction concepts: material, piece square tables, pawn structure,
mobility and king safety were used to generate the 1812 distinct features. These features were a
strict subset of the features used in Bodo, which are themselves simplistic compared to a typical
tournament engine (Campbell et al., 2002).

The evaluation function Hθ(s) was a weighted linear combination of the features i.e. Hθ(s) =
φ(s)T θ. All components of θ were initialised to small random numbers. Terminal positions were

5



evaluated as −9999.0, 0 and 9999.0 for a loss, draw and win respectively. In the search tree, mate
scores were adjusted inward slightly so that shorter paths to mate were preferred when giving mate,
and vice-versa. When applying the heuristic evaluation function in the search, the heuristic estimates
were truncated to the interval [−9900.0, 9900.0].

Meep contains two different modes: a tournament mode and a training mode. When in tournament
mode, Meep uses an enhanced alpha-beta based search algorithm. Tournament mode is used for
evaluating the strength of a weight configuration. In training mode however, one of two different
types of game tree search algorithms are used. The first is a minimax search that stores the entire
game tree in memory. This is used by the TreeStrap(minimax) algorithm. The second is a generic
alpha-beta search implementation, that uses only three well known alpha-beta search enhancements:
transposition tables, killer move tables and the history heuristic (Schaeffer, 1989). This simplified
search routine was used by the TreeStrap(αβ) and RootStrap(αβ) algorithms. In addition, to reduce
the horizon effect, checking moves were extended by one ply. During training, the transposition
table was cleared before the search routine was invoked.

Simplified search algorithms were used during training to avoid complicated interactions with the
more advanced heuristic search techniques (such as null move pruning) useful in tournament play.
It must be stressed that during training, no heuristic or move ordering techniques dependent on
knowing properties of the evaluation weights were used by the search algorithms.

Furthermore, a quiescence search (Beal, 1990) that examined all captures and check evasions was
applied to leaf nodes. This was to improve the stability of the leaf node evaluations. Again, no
knowledge based pruning was performed inside the quiescence search tree, which meant that the
quiescence routine was considerably slower than in Bodo.

6 Experimental Results

We describe the details of our training procedures, and then proceed to explore the performance
characteristics of our algorithms, RootStrap(αβ), TreeStrap(minimax) and TreeStrap(αβ) through
both a large local tournament and online play. We present our results in terms of Elo ratings. This is
the standard way of quantifying the strength of a chess player within a pool of players. A 300 to 500
Elo rating point difference implies a winning rate of about 85% to 95% for the higher rated player.

6.0.1 Training Methodology

At the start of each experiment, all weights were initialised to small random values. Games of self-
play were then used to train each player. To maintain diversity during training, a small opening book
was used. Once outside of the opening book, moves were selected greedily from the results of the
search. Each training game was played within 1m 1s Fischer time controls. That is, both players
start with a minute on the clock, and gain an additional second every time they make a move. Each
training game would last roughly five minutes.

We selected the best step-size for each learning algorithm, from a series of preliminary experiments:
α = 1.0 × 10−5 for TD-Leaf and RootStrap(αβ), α = 1.0 × 10−6 for TreeStrap(minimax) and
5.0 × 10−7 for TreeStrap(αβ). The TreeStrap variants used a minimum search depth parameter of
d = 1. This meant that the target values were determined by at least one ply of full-width search,
plus a varying amount of quiescence search.

6.1 Relative Performance Evaluation

We ran a competition between many different versions of Meep in tournament mode, each using
a heuristic function learned by one of our algorithms. In addition, a player based on randomly
initialised weights was included as a reference, and arbitrarily assigned an Elo rating of 250. The
best ratings achieved by each training method are displayed in Table 2.

We also measured the performance of each algorithm at intermediate stages throughout training.
Figure 2 shows the performance of each learning algorithm with increasing numbers of games on
a single training run. As each training game is played using the same time controls, this shows the

6



10
1

10
2

10
3

10
4

0

500

1000

1500

2000

2500

Number of training games

R
at

in
g 

(E
lo

)

Learning from self−play: Rating versus Number of training games

 

 
TreeStrap(alpha−beta)
RootStrap(alpha−beta)
TreeStrap(minimax)
TD−Leaf
Untrained

Figure 2: Performance when trained via self-play starting from random initial weights. 95% confi-
dence intervals are marked at each data point. The x-axis uses a logarithmic scale.

Algorithm Elo
TreeStrap(αβ) 2157± 31
TreeStrap(minimax) 1807± 32
RootStrap(αβ) 1362± 59
TD-Leaf 1068± 36
Untrained 250± 63

Table 2: Best performance when trained by self play. 95% confidence intervals given.

performance of each learning algorithm given a fixed amount of computation. Importantly, the time
used for each learning update also took away from the total thinking time.

The data shown in Table 2 and Figure 2 was generated by BayesElo, a freely available program that
computes maximum likelihood Elo ratings. In each table, the estimated Elo rating is given along
with a 95% confidence interval. All Elo values are calculated relative to the reference player, and
should not be compared with Elo ratings of human chess players (including the results of online
play, described in the next section). Approximately 16000 games were played in the tournament.

The results demonstrate that learning from many nodes in the search tree is significantly more effi-
cient than learning from a single root node. TreeStrap(minimax) and TreeStrap(αβ) learn effective
weights in just a thousand training games and attain much better maximum performance within the
duration of training. In addition, learning from alpha-beta search is more effective than learning
from minimax search. Alpha-beta search significantly boosts the search depth, by safely pruning
away subtrees that cannot affect the minimax value at the root. Although the majority of nodes now
contain one-sided bounds rather than exact values, it appears that the improvements to the search
depth outweigh the loss of bound information.

Our results demonstrate that the TreeStrap based algorithms can learn a good set of weights, starting
from random weights, from self-play in the game of chess. Our experiences using TD-Leaf in this
setting were similar to those described in (Baxter et al., 1998); within the limits of our training
scheme, learning occurred, but only to the level of weak amateur play. Our results suggest that
TreeStrap based methods are potentially less sensitive to initial starting conditions, and allow for
speedier convergence in self play; it will be interesting to see whether similar results carry across to
domains other than chess.

7



Algorithm Training Partner Rating
TreeStrap(αβ) Self Play 1950-2197
TreeStrap(αβ) Shredder 2154-2338

Table 3: Blitz performance at the Internet Chess Club

6.2 Evaluation by Internet Play

We also evaluated the performance of the heuristic function learned by TreeStrap(αβ), by using it in
Meep to play against predominantly human opposition at the Internet Chess Club. We evaluated two
heuristic functions, the first using weights trained by self-play, and the second using weights trained
against Shredder, a grandmaster strength commercial chess program.

The hardware used online was a 1.8Ghz Opteron, with 256Mb of RAM being used for the transpo-
sition table. Approximately 350K nodes per second were seen when using the learned evaluation
function. A small opening book was used to make the engine play a variety of different opening
lines. Compared to Bodo, the learned evaluation routine was approximately 3 times slower, even
though the evaluation function contained less features. This was due to a less optimised implemen-
tation, and the heavy use of floating point arithmetic.

Approximately 1000 games were played online, using 3m 3s Fischer time controls, for each heuristic
function. Although the heuristic function was fixed, the online rating fluctuates significantly over
time. This is due to the high K factor used by the Internet Chess Club to update Elo ratings, which
is tailored to human players rather than computer engines.

The online rating of the heuristic learned by self-play corresponds to weak master level play. The
heuristic learned from games against Shredder were roughly 150 Elo stronger, corresponding to
master level performance. Like TD-Leaf, TreeStrap also benefits from a carefully chosen opponent,
though the difference between self-play and ideal conditions is much less drastic. Furthermore,
a total of 13.5/15 points were scored against registered members who had achieved the title of
International Master.

We expect that these results could be further improved by using more powerful hardware, a more
sophisticated evaluation function, or a better opening book. Furthermore, we used a generic alpha-
beta search algorithm for learning. An interesting follow-up would be to explore the interaction
between our learning algorithms and the more exotic alpha-beta search enhancements.

7 Conclusion

Our main result is demonstrating, for the first time, an algorithm that learns to play master level
Chess entirely through self play, starting from random weights. To provide insight into the nature
of our algorithms, we focused on a single non-trivial domain. However, the ideas that we have
introduced are rather general, and may have applications beyond deterministic two-player game tree
search.

Bootstrapping from search could, in principle, be applied to many other search algorithms.
Simulation-based search algorithms, such as UCT, have outperformed traditional search algorithms
in a number of domains. The TreeStrap algorithm could be applied, for example, to the heuristic
function that is used to initialise nodes in a UCT search tree with prior knowledge (Gelly & Silver,
2007). Alternatively, in stochastic domains the evaluation function could be updated towards the
value of an expectimax search, or towards the one-sided bounds computed by a *-minimax search
(Hauk et al., 2004; Veness & Blair, 2007). This approach could be viewed as a generalisation of ap-
proximate dynamic programming, in which the value function is updated from a multi-ply Bellman
backup.

Acknowledgments

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

8



References

Baxter, J., Tridgell, A., & Weaver, L. (1998). Knightcap: a chess program that learns by combining
td(lambda) with game-tree search. Proc. 15th International Conf. on Machine Learning (pp.
28–36). Morgan Kaufmann, San Francisco, CA.

Beal, D. F. (1990). A generalised quiescence search algorithm. Artificial Intelligence, 43, 85–98.
Beal, D. F., & Smith, M. C. (1997). Learning piece values using temporal differences. Journal of

the International Computer Chess Association.
Buro, M. (1999). From simple features to sophisticated evaluation functions. First International

Conference on Computers and Games (pp. 126–145).
Campbell, M., Hoane, A., & Hsu, F. (2002). Deep Blue. Artificial Intelligence, 134, 57–83.
Gelly, S., & Silver, D. (2007). Combining online and offline learning in UCT. 17th International

Conference on Machine Learning (pp. 273–280).
Hauk, T., Buro, M., & Schaeffer, J. (2004). Rediscovering *-minimax search. Computers and

Games (pp. 35–50).
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development, 3.
Schaeffer, J. (1989). The history heuristic and alpha-beta search enhancements in practice. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-11, 1203–1212.
Schaeffer, J., Hlynka, M., & Jussila, V. (2001). Temporal difference learning applied to a high

performance game playing program. IJCAI, 529–534.
Sutton, R. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3,

9–44.
Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program, achieves master-level play.

Neural Computation, 6, 215–219.
Veness, J., & Blair, A. (2007). Effective use of transposition tables in stochastic game tree search.

IEEE Symposium on Computational Intelligence and Games (pp. 112–116).

9


