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Abstract

In many domains, humans appear to combine perceptual cues in a near-optimal,
probabilistic fashion: two noisy pieces of information tend to be combined lin-
early with weights proportional to the precision of each cue. Here we present
a case where structural information plays an important role. The presence of a
background cue gives rise to the possibility of occlusion, and places a soft con-
straint on the location of a target - in effect propelling it forward. We present
an ideal observer model of depth estimation for this situation where structural
or ordinal information is important and then fit the model to human data from a
stereo-matching task. To test whether subjects are truly using ordinal cues in a
probabilistic manner we then vary the uncertainty of the task. We find that the
model accurately predicts shifts in subject’s behavior. Our results indicate that the
nervous system estimates depth ordering in a probabilistic fashion and estimates
the structure of the visual scene during depth perception.

1 Introduction

Understanding how the nervous system makes sense of uncertain visual stimuli is one of the central
goals of perception research. One strategy to reduce uncertainty is to combine cues from several
sources into a good joint estimate. If the cues are Gaussian, for instance, an ideal observer should
combine them linearly with weights proportional to the precision of each cue. In the past few
decades, a number of studies have demonstrated that humans combine cues during visual perception
to reduce uncertainty and often do so in near-optimal, probabilistic ways [1, 2, 3, 4].

In most situations, each cue gives noisy information about the variable of interest that can be mod-
eled as a Gaussian likelihood function about the variable. Recently [5] have suggested that subjects
may combine a metric cue (binocular disparity) with ordinal cues (convexity or familiarity of faces)
during depth perception. In these studies ordinal cues were modeled as simple biases. We argue that
the effect of such ordinal cues stems from a structural inference process where an observer estimates
the structure of the visual scene along with depth cues.

The importance of structural inference and occlusion constraints, particularly of hard constraints,
has been noted previously [6, 7, 8]. For instance, it was found that points presented to one eye but
not the other have a perceived depth that is constrained by the position of objects presented to both
eyes. Although these unpaired image points do not contain depth cues in the usual sense, subjects
were able to estimate their depth. This indicates that human subjects indeed use the inferred structure
of a visual scene for the estimation of depth.

Here we formalize the constraints presented by occlusion using a probabilistic framework. We first
present the model and illustrate its ability to describe data from [7]. Then we present results from
a new stereo-vision experiment in which subjects were asked to match the depth of an occluding
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or occluded circle. The model accurately predicts human behavior in this task and describes the
changes that occur when we increase depth uncertainty. These results cannot be explained by tradi-
tional cue combination or even more recent relevance (causal inference) models [9, 10, 11, 12]. Our
constraint-based approach may thus be useful in understanding how subjects make sense of cluttered
scenes and the impact of structural inference on perception.

2 Theory

2.1 An Ordinal Cue Combination Model

We assume that observers receive noisy information about the depth of objects in the world. For
concreteness, we assume that there is a central object c and a surrounding object s. The exact shapes
and relative positions of these two objects are not important, but naming them will simplify the
notation that follows. We assume that each of these objects has a true, hidden depth (xc and xs) and
observers receive noisy observations of these depths (yc and ys).

In a scene with potential occlusion there may be two (or more) possible interpretations of an image
(Fig 1A). When there is no occlusion (structure S1) the depth observations of the two objects are
independent. That is, we assume that the depth of the surrounding object in the scene s has no influ-
ence on our estimate of the depth of c. The distribution of observations is assumed to be Gaussian
and is physically determined by disparity, shading, texture, or other depth cues and their associated
uncertainties. In this case the joint distribution of the observations given the hidden positions is

p(yc, ys|xc, xs, S1) = p(yc|xc, S1)p(ys|xs, S1) = Nyc(xc, σc)Nys(xs, σs). (1)

When occlusion does occur, however, the position of the central object c is bounded by the depth of
the surrounding, occluded object (structure S2)

p(yc, ys|xc, xs, S2) ∝
{
Nyc

(xc, σc)Nys
(xs, σs) if xc > xs,

0 if xc ≤ xs.
(2)

An ideal observer can then make use of this ordinal information in estimating the depth of the
occluding object. The (marginal) posterior distribution over the hidden depth of the central object
xc can be found by marginalizing over the depth of the surrounding object xs and possible structures
(S1 and S2).

p(xc | yc, ys) = p(xc | yc, ys, S1)p(S1) + p(xc | yc, ys, S2)p(S2) (3)
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Figure 1: An occlusion model with soft-constraints. (A) Two possible structures leading to the
same observation: one without occlusion S1 and one with occlusion S2. (B) Examples of biases in
the posterior estimate of xc for complete (left), moderate (center), and no relevance (right). In the
cases shown, the observed depth of the central stimulus yc is the same as the observed depth of the
surrounding stimulus ys. Note that when yc � ys the constraint will not bias estimates of xc.
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Using the assumption of conditional independence and assuming flat priors over the hidden depths
xc and xs, the first term in this expression is

p(xc | yc, ys, S1) =
∫
p(xc|yc, ys, xs, S1)p(xs | yc, ys, S1)dxs

=
∫
p(xc|yc, S1)p(xs|ys, S1)dxs =

∫
Nxc

(yc, σc)Nxs
(ys, σs)dxs

= Nxc(yc, σc).

(4)

The second term is then

p(xc | yc, ys, S2) =
∫
p(xc|yc, ys, xs, S2)p(xs | yc, ys, S2)dxs

=
∫
p(yc, ys|xc, xs, S2)dxs

=
∫ xc

−∞
Nxc

(yc, σc)Nxs
(ys, σs)dxs

=
1
Z

[erf(ρs(xc − ys))/2 + 1/2]Nxc(yc, σc),

(5)

where step 2 uses Bayes’ rule and the assumption of flat priors, ρs = 1/
√

(2π)/σs and Z is a
normalizing factor. Combining these two terms gives the marginal posterior

p(xc | yc, ys) =
1
Z

[(1− p(S1))(erf(ρs(xc − ys))/2 + 1/2) + p(S1)]Nxc(yc, σc), (6)

which describes the best estimate of the depth of the central object. Intuitively, the term in square
brackets constrains the possible depths of the central object c (Fig 1B). The p(S1) term allows for the
possibility that the constraint should not apply. Similar to models of causal inference [11, 12, 9, 10],
the surrounding stimulus may be irrelevant, in which case we should simply rely on the observation
of the target.

Here we have described two specific structures in the world that result in the same observation. Real
world stimuli may result from a much larger set of possible structures. Generally, we can simply
split structures into those with occlusionO and those without occlusion ¬O. Above, S1 corresponds
to the set of possible structures without occlusion ¬O, and S2 corresponds to the set of possible
structures with occlusion O. It is not necessary to actually enumerate the possible structures.

Similar to traditional cue combination models, where there is an analytic form for the expected value
of the target (linear combination weighted by the precision of each cue), we can write down analytic
expressions for E[xc] for at least one case. For p(S1) = 0, σs → 0 the mean of the marginal
posterior is the expected value of a truncated Gaussian

E(xc|ys < xc) = yc + σcλ(
ys − yc
σc

) (7)

Where λ(·) = φ(·)
[1−Φ(·)] , φ(·) is the PDF for the standard normal distribution and Φ(·) is the CDF.

For yc = ys, for instance,

E(xc|ys < xc) = yc + 0.8σc (8)

It is important to note that, similar to classical cue combination models, estimation of the target is im-
proved by combining depth information with the occlusion constraint. The variance of p(xc|yc, ys)
is smaller than that of p(xc | yc, ys, S1).
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2.2 Modeling Data from Nakayama and Shimojo (1990)

To illustrate the utility of this model, we fit data from [7]. In this experiment subjects were presented
with a rectangle in each eye. Horizontal disparity between the two rectangles gave the impression of
depth. To test how subjects perceive occluded objects, a small vertical bar was presented to one eye,
giving the impression that the large rectangle was occluding the bar and leading to unpaired image
points (Fig 2A). Subjects were then asked to match the depth of this vertical bar by changing the dis-
parity of another image in which the bar was presented in stereo. Despite the absence of direct depth
cues, subjects assigned a depth to the vertical bar. Moreover, for a range of horizontal distances, the
assigned depth was consistent with the constraint provided by the stereo-rectangle (Fig 2B). These
results systematically characterize the effect of structural estimation on depth estimates. Without
ordinal information, the horizontal distance between the rectangle and the vertical bar should have
no effect on the perceived depth of the bar.

In our model yc and ys are simply observations on the depth of two objects: in this case, the unpaired
vertical bar and the large rectangle. Since there isn’t direct disparity for the vertical bar, we assume
that horizontal distance from the large rectangle serves as the depth cue. In reality an infinity of
depths are compatible with a given horizontal distance (Fig 2A, dotted lines). However, the size and
shape of the vertical bar serve as indirect cues, which we assume generate a Gaussian likelihood
(as in Eq. 1). We fit our model to this data with three free parameters: σs, σc, and a relevance
term p(O). The event O corresponds to occlusion (case S2), while ¬O corresponds to the set of
possible structures leading to the same observation without occlusion. For the valid stimuli where
occlusion can account for the vertical bar being seen in only one eye, σs = 4.45 arcmin, σc = 12.94
arcmin and p(¬O) = 0.013 minimized the squared error between the data and model fit (Fig 2C).
For invalid stimuli we assume that p(¬O) = 1, which matches subject’s responses.
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Figure 2: Experiment and data from [7]. A) Occlusion puts hard constraints on the possible depth of
unpaired image points (top). This leads to ”valid” and ”invalid” stimuli (bottom). B) When subjects
were asked to judge the depth of unpaired image points they followed these hard constraints (dotted
lines) for a range of distances between the large rectangle and vertical bar (top). The two figures
show a single subject’s response when the vertical bar was positioned to the left or right of a large
rectangle. The ordinal cue combination model can describe this behavior as well as deviations from
the constraints for large distances (bottom).
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