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Abstract
We introduce a new interpretation of multiscale random fields (MSRFs) that ad-
mits efficient optimization in the framework of regular (single level) random fields
(RFs). It is based on a new operator, called append, that combines sets of random
variables (RVs) to single RVs. We assume that a MSRF can be decomposed into
disjoint trees that link RVs at different pyramid levels. The append operator is
then applied to map RVs in each tree structure to a single RV. We demonstrate
the usefulness of the proposed approach on a challenging task involving grouping
contours of target shapes in images. It provides a natural representation of mul-
tiscale contour models, which is needed in order to cope with unstable contour
decompositions. The append operator allows us to find optimal image segment
labels using the classical framework of relaxation labeling. Alternative methods
like Markov Chain Monte Carlo (MCMC) could also be used.

1 Introduction
Random Fields (RFs) have played an increasingly important role in the fields of image denoising,
texture discrimination, image segmentation and many other important problems in computer vision.
The images analyzed for these purposes typically have significant fractal properties which preclude
the use of models operating at a single resolution level. Such models, which aim to minimize mean-
squared estimation error, use only second-order image statistics which fail to accurately characterize
the images of interest. Multiscale random fields (MSRFs) resolve this problem by using information
at many different resolution levels [2, 15, 5]. In [6], a probabilistic model of multiscale conditional
random fields (mCRF) was proposed to segment images by labeling pixels using a predefined set of
class labels.

The main difference between the proposed interpretation of MSRFs or mCFF as known in the lit-
erature, e.g., [2, 15, 6, 5], and the proposed MSRF is the interpretation of the connections between
different scales (levels). In the proposed approach, the random variables (RVs) linked by a tree sub-
structure across different levels compete for their label assignments, while in the existing approaches
the goal is to cooperate in the label assigns, which is usually achieved by averaging. In other words,
usually the label assignment of a parent node is enforced to be compatible with the label assignment
of its children by averaging. In contrast, in the proposed approach the parent node and all its children
compete for the best possible label assignment.

Contour grouping is one of key approaches to object detection and recognition, which is a funda-
mental goal of computer vision. We introduce a novel MSRF interpretation, and show its benefits
in solving the contour grouping problem. The MSRF allows us to cast contour grouping as con-
tour matching. Detection and grouping by shape has been investigated in earlier work. The basic
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idea common to all methods is to define distance measures between shapes, and then accurately
label and/or classify shapes using these measures. Classical methods, of this type, such as shape
contexts [1] and chamfer matching [13] can not cope well with clutter and shape deformations.
Some researchers described the shape of the entire object using deformable contour fragments and
their relative positions [10, 12], but their detection results are always grassy contour edges. The
deformable template matching techniques often require either good initial positions or clean images
(or both) to avoid (false) local minima [14, 9]. Recently, Ferrari et al. [4] have used the sophisticated
edge detection methods of [8]; the resulting edges are linked to a network of connected contour seg-
ments by closing small gaps. Wu et al. [16] proposed an active basis model that provides deformable
template consisting of a small number of Gabor wavelet elements allowed to slightly perturb their
locations and orientations.

Our grouping is also based on the edge detection of [8], but we do not perform edge linking directly
for purposes of grouping. We perform matching a given contour model to edge segments in images.
This allows us to perform grouping and detection at the same time. Our method differs from former
sampled-points-based matching methods [14, 3]; we match the contour segments from the given
contour to segments in edge images directly.

We decompose a given closed contour of a model shape into a group of contour segments, and match
the resulting contour segments to edge segments in a given image. Our model contour decomposition
is flexible and admits a hierarchical structure, e.g., a parent contour segment is decomposed into two
or more child segments. In this way, our model can adapt to different configurations of contour
parts in edge images. The proposed MSRF interpretation allows us to formulate the problem of
contour grouping as a soft label assignment problem. Since in our approach a parent node and all its
children compete for the best possible label assignment, allowing us to examine multiple composite
hypotheses of model segments in the image, a successful contour grouping of edge segments is
possible even if significant contour parts are missing or are distorted. The competition is made
possible by the proposed append operator. It appends the random variables (RVs) representing the
parent and all its children nodes to a single new RV. Since the connectivity relation between each
pair of model segments is known, the soft label assignment and the competition for best labels make
accurate grouping results in real images possible.

We also want to stress that our grouping approach is based on matching of contour segments. The
advantages of segment matching over alternative techniques based on point matching are at least
twofold: 1) it permits deformable matching (i.e., the global shape will not be changed even when
some segments shift or rotate a little); 2) it is more stable than point matching, since contour seg-
ments are more informative than points as shape cues.

2 Multiscale Random Fields
Given a set of data points X = {x1, . . . , xn}, the goal of random fields is to find a label assignment
f that maximizes the posterior probability p(f |X) (of that assignment):

f̂ = argmaxfp(f |X) (1)

Thus, we want to select the label assignment with the largest possible probability given the observed
data. Although the proposed method is quite general, for clarity of presentation, we focus on an
application of interest to us: contour grouping based on contour part correspondence.

We take the contour of an example shape to be our shape model S. We assume that the model
is composed of several contour segments s1, . . . , sm. In our application, the data points X =
{x1, . . . , xn} are contour segments extracted by some low level process in a given image. The
random field is defined by a sequence of random variables F = (F 1, . . . , Fm) associated with nodes
si of the model graph F represents the mapping of the nodes (model segments) S = {s 1, , sm} to
the data points X = {x1, . . . , xn} (i.e., F : S → X). We write Fi = xj to denote the event that
the model segment si is assigned the image segment xj by the map F. (Observe that usually the
assignment is defined in the reverse direction, i.e., from an image to the model.)

Our goal is to find a label assignment f = (f1, . . . , fm) ∈ Xm that maximizes the probability
p(f |X) = p(F1 = f1, . . . , Fm = fm|X), i.e.,

f̂ = (f̂1, . . . , f̂m) = argmax
(f1,...,fm)

p(F1 = f1, . . . , Fm = fm|X) (2)
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However, the object contour in the given image (which is composed of some subset of segments in
X = {x1, . . . , xn} may have a different decomposition into contour segments than is the case for
the model s1, . . . , sm. This is the case, for example, if some parts of the true contour are missing,
i.e., some si may not correspond to parts in X . Therefore, a shape model is needed that can provide
robust detection and recognition under these conditions. We introduce such a model by imposing a
multiscale structure on contour segments of the model shape. Let the lowest level zero represents the
finest subdivision of a given model contour S into the segments S 0 = {s0

1, . . . , s
0
m0

}. The α level
partition subdivides the contour into the segments S α = {sα

1 , . . . , sα
mα

} for α = 1, . . . , β, where β
denotes the highest (i.e., most coarse) pyramid level. For each pyramid level α, the segments, S α,
partition the model contour S, i.e., S = sα

1 ∪ · · · ∪ sα
mα

. The segments Sα in level α refine the
segments Sα+1 in level α+1, i.e., segments in the level α+1 are unions of one or more consecutive
segments in the level α. On each level α we have a graph structure Gα = (Sα, Eα), where Eα is
the set of edges governing the relations between segments in S α, and we have a forest composed of
trees that link nodes at different levels. The number of the trees corresponds to the number of nodes
on the highest level sβ

1 , . . . , sβ
mβ

, since each of these nodes is the root of one tree. We denote these
trees with T1, . . . , Tmβ

. For example, in Fig. 1 we have eight segments on the level zero s 0
1, . . . , s

0
8,

and four segments on the level one

s1
1 = s0

1 ∪ s0
2, s1

2 = s0
3 ∪ s0

4, s1
3 = s0

5 ∪ s0
6, s1

4 = s0
7 ∪ s0

8.

This construction leads to a tree structure relation among segments at different levels. For example,
T1 is a tree with s1

1 (segment 1) as a parent node and with two children s0
1, s

0
2 (segments 5 and 6).
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Figure 1: An example of a multiscale random field structure.

We associate a random variable F α
i with each segment sα

i . The range of each random variable F α
i

is the set of contour segments X = {x1, . . . , xn} extracted in a given image. The random variables
inherit the tree structure from the corresponding model segments. Thus, we obtain a multiscale
random field with random variables (RVs)

F = (F 0
1 , . . . , F 0

m0
, . . . , Fα

1 , . . . , Fα
mα

, . . . , F β
1 , . . . , F β

mβ
), (3)

the relational structure (RS) Gα = (Sα, Eα), and trees T1, . . . , Tmβ
. Our goal remains the same as

stated in (2), but the graph structure of the underlying RF is significantly more complicated by the
introduction of the multiscale tree relations. Therefore, the maximization in (2) is significantly more
complicated as well. Usually, the computation in multiscale random fields is based on modeling the
dependencies between the random variables related by the (aforementioned) tree structures.

In the proposed approach, we do not explicitly model these tree structure dependencies. Instead, we
build relations between them using the construction of a new random variable that explicitly relates
all random variables in each given tree. We introduce a new operator acting on random variables,
called append operator. The operator combines a given set of random variables Y = {Y 1, . . . , Yk}
into a single random variable denoted

⊕ Y = Y1 ⊕ · · · ⊕ Yk. (4)

For simplicity, we assume, in the definition below, that {Y1, . . . , Yk} are discrete random variables
taking values in the set X = {x1, . . . , xn}. Our definition can be easily generalized to continuous
random variables. The append random variable, ⊕Y , with distribution defined below, takes values
in the set of pairs, {1, . . . , k} × X . The distribution of the random variable ⊕Y is given by,

p(⊕Y = (i, xj)) =
1
k
· p(Yi = xj), (5)
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where index i is over the RVs and index j is over the labels. The intuition behind this construction
can be explained by the following simple example. Let Y1, Y2 be two discrete random variables with
distributions

(p(Y1 = 1), p(Y1 = 2), p(Y1 = 3)) and (p(Y2 = 1), p(Y2 = 2), p(Y2 = 3)), (6)

then the distribution of Y1 ⊕ Y2 is simply given by vector

1/2 · (p(Y1 = 1), p(Y1 = 2), p(Y1 = 3), p(Y2 = 1), p(Y2 = 2), p(Y2 = 3)). (7)

Armed with this construction, we return to our multiscale RF with RVs in (3). Recall that the RVs
representing the nodes on the highest level F β

1 , . . . , F β
mβ

are the roots of trees T1, . . . , Tmβ
. By

slightly abusing our notation, we define ⊕T i as the append of all random variables that are nodes of
tree Ti. This construction allows us to reduce the multiscale RF with RVs in (3) to a RF with RVs

T = (⊕T1, . . . ,⊕Tmβ
). (8)

The graph structure of this new RF is defined by graph G = (T, E) such that

(⊕Ti,⊕Tj) ∈ E iff ∃α ∃a,b (Fα
a , Fα

b ) ∈ Eα and F α
a ∈ ⊕Ti and F α

b ∈ ⊕Tj (9)

In simple words, ⊕Ti and ⊕Tj are related in G iff on some level α both trees have related random
variables.

The construction in (8) and (9) maps a multiscale RF to a single level RF, i.e., to a random field
with a simple graph structure G. The intuition is that we collapse all graphs Gα = (Sα, Eα) for
α = 1, . . . , β to a single graph G = (T, E) by gluing all RVs in each tree T i to a single RV ⊕Ti.
Consequently, any existing RF optimization method can be applied to compute

t̂ = (t̂1, . . . , t̂mβ
) = argmax

(t1,...,tmβ
)

p(⊕T1 = t1, . . . ,⊕Tmβ
= tmβ

|X). (10)

We observe that when optimizing the new RF in (10), we can simply perform separate optimizations
on each level, i.e., on each level α we optimize (8) with respect to the graph structure G α. Hence at
each level α we choose the maximum aposteriori estimate associated with the random field at that
level. Our key contribution is the fact that these optimizing estimators are linked by the internal
structure of the RVs ⊕Ti.

After optimizing a regular RF in (10) that contains append RVs, we obtain as the solution updated
distributions of the append RVs. From them, we can easily reconstruct the updated distributions of
the original RVs from the multiscale RF in (2) by the construction of the append RVs. For example,
if we obtain ( 1

10 , 3
5 , 1

10 , 0, 1
10 , 1

10 ) as the updated distribution of some RV Y1⊕Y2, then we can easily
derive the updated distributions of Y1, Y2 as

(p(Y1 = 1) =
1

8
, p(Y1 = 2) =

3

4
, p(Y1 = 3) =

1

8
) & (p(Y2 = 1) = 0, p(Y2 = 2) =

1

2
, p(Y2 = 3) =

1

2
)

To obtain the distributions of the compound RVs Y1, Y2, we only need to ensure that both distribu-
tions of Y1 and Y2 sum to one. Since we are usually interested in selecting a variable assignment with
maximum posterior probability (10), we do not need to derive these distributions. Consequently, in
this example, it is sufficient for us to determine that the assignment of Y1 to label 2 maximizes
Y1 ⊕ Y2.

Going back to our application in contour grouping, the RV ⊕T 2 is an append of three RVs repre-
senting segments 2, 7, 8 in Fig. 1. We observe that RVs appended to ⊕T 2 compete in the label
assignment. For example, if a given assignment of RV ⊕T2 to an image segment, say x5, maximizes
⊕T2, then, by the position in the discrete distribution of ⊕T2, we can clearly identify which RV is
the winner, i.e., which of the model segments 2, 7, 8 is assigned to image segment x 5. We can also
make this competition soft (with more then one winner) if we select local maxima of the discrete
distribution of ⊕T2, which may lead to assigning more than one of model segments 2, 7, 8 to image
segments. In the computation model presented in the next section, we focus on finding a global
maximum for each RV ⊕Ti.
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3 Computing the label assignment with relaxation labeling
There exist several approaches to compute the assignment f that optimizes the relational structure of
a given RF [7], i.e., approaches that solve Eq. (10), which is our formulation of the general RF Eq.
(2). In our implementation, we use a particularly simple approach of relaxation labeling introduced
by Rosenfeld et al. in [11]. However, a more powerful class of MCMC methods could also be used
[7]. In this section, we briefly describe the relaxation labeling (RL) method, and how it fits into our
framework.

We recall that our goal is to find a label assignment t = (t1, . . . , tm) that maximizes the probability
p(t|X) = p(⊕T1 = t1, . . . ,⊕Tm = tm|X) in Eq. (10), where we have shortened m = mβ . One of
the key ideas of using RL is to decompose p(t|X) into individual probabilities p(⊕T a = (ia, xj)),
where index a = 1, . . . , m ranges over the RVs of the RF, index j = 1, . . . , n ranges over the
possible labels, which in our case are the contour segments X = {x1, . . . , xn} extracted from a
given image, and index ia ranges over the RVs that are appended to ⊕Ta, which we denote with
ia ∈ a. For brevity, we use the notation

pa(ia, xj) = p(⊕Ta = (ia, xj)).

Going back to our example in Fig. 1, p2(7, x5) denotes the probability that contour segment 7 is
assigned to an image segment x5, and 2 is the index of RV ⊕T2. We recall that ⊕T2 is an append of
three RVs representing segments 2, 7, 8 in Fig. 1. In Section 5, p 2(7, x5) is modeled as a Gaussian
of the shape dissimilarity between model contour segment 7 and image contour segment 5.

As is usually the case for RFs, we also consider binary relations between RVs that are adjacent
in the underlying graph structure G = (T, E), which represent conditional probabilities p(⊕T a =
(ia, xj) | ⊕ Tb = (ib, xk)). They express the compatibility of these label assignment. Again for
brevity, we use notation

Ca,b((ia, xj), (ib, xk)) = p(⊕Ta = (ia, xj) | ⊕ Tb = (ib, xk)).

For example, C2,3((7, x5), (9, x8)) models the compatibility of assignment of model segment 7
(part of model tree 2) to image segment x5 with the assignment of model segment 9 (part of model
tree 3) to image segment x8. This compatibility is a function of geometric relations between the
segments. Since segment 9 is above segment 7 in the model contour, it is reasonable to assign high
compatibility only if the same holds for the image segments, i.e., x 8 is above x5.

The RL algorithm iteratively estimates the change in the probability pa(ia, xj) by:

δpa(ia, xj) =
∑

b=1,...,m: b�=a

∑
ib∈b

∑
xk∈X: xk �=xj

Ca,b((ia, xj), (ib, xk)) · pb(ib, xk), (11)

where b varies over all append random variables ⊕T b different form ⊕Ta and ib varies over all
compound RVs that are combined by append to ⊕T b. Then the probability is updated by

pa(ia, xj) =
pa(ia, xj)[1 + δpa(ia, xj)]∑

ia∈a

∑
xk∈X pa(ia, xk)[1 + δpa(ia, xk)]

, (12)

The double sum in the denominator simply normalizes the distribution of ⊕T a so that it sums to one.

The RL algorithm in our framework iterates steps (11) and (12) for all a = 1, . . . , m (append RVs),
all ia ∈ a, and all labels xj ∈ X . It can be shown that the RL algorithm is guaranteed to converge,
but not necessarily to a global maximum [7].

4 A contour grouping example
We provide a simple but real example to illustrate how our multiscale RF framework solves a con-
crete contour grouping instance. We use the contour model presented in Fig. 1. Let F i be a RV cor-
responding to model contour segment s i for i = 1, . . . , 12. We have two levels S0 = {F5, . . . , F12}
and S1 = {F1, . . . , F4}. Both graph structures G0 and G1 are complete graphs. As described in
Section 2, we have MSRF with four trees. The append RVs determined by these trees are:

⊕T1 = F1 ⊕ F5 ⊕ F6, ⊕T2 = F2 ⊕ F7 ⊕ F8, ⊕T3 = F3 ⊕ F9 ⊕ F10, ⊕T4 = F4 ⊕ F11 ⊕ F12

We obtain a regular (single level) RF with the four append RVs, T = (⊕T1,⊕T2,⊕T3,⊕T4), and
with the graph structure G = (T, E) determined by Eq. (9).
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Given an image as in Fig. 2(a), we first compute its edge map shown in Fig. 2(b), and use a low level
edge linking to obtain edge segments in Fig. 2(c). The 16 edge segments in Fig. 2(c) form our label
set X = {x1, x2, . . . x16}. Our goal is to find label assignment to RVs ⊕Ta for a = 1, 2, 3, 4 with
maximum posterior probability (10). However, the label set of each append RV is different, e.g., the
label set of ⊕T1 is equal to {1, 5, 6}×X , where ⊕T1 = (1, x5) denotes the assignment of F1 = x5

representing mapping model segment 1 to image segment 5. Hence p 1(ia, xj) = p(⊕T1 = (ia, xj))
for ia = 1, j = 5 denotes the probability of mapping model segment i a = 1 to image segment
j = 5.

As described in Section 3, we use relaxation labeling to compute the maximum posterior probability
(10). Initially, all probabilities pa(ia, xj) are set based on shape similarity between involved model
and image segments. The assignments compatibilities are determined using geometric relations de-
scribed in Section 5. After 200 iterations, RL finds the best assignment for each RV ⊕T a as Fig.
2(d) illustrates. They are presented in the format RV: model segment → edge segment:
⊕T1 : 1 → x12; ⊕T2 : 5 → x10; ⊕T3 : 8 → x7; ⊕T4 : 4 → x5.
Observe that many model segments remained unmatched, since there they do not have any corre-
sponding segments in the image 2(c). This very desirable property results from the label assignment
competition within each append RV ⊕Ta for a = 1, 2, 3, 4. This fact demonstrates one of the main
benefits of the propose approach. We stress that we do not use any penalties for non matching,
which are usually used in classical RFs (e.g., nil variables in [7]), but are very hard to set in real
applications.
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Figure 2: (c) The 16 edge segments form our label set X = {x1, x2, . . . x16}. (d) The numbers and
colors indicate the assignment of the model segments from Fig. 1.

5 Geometric contour relations
In this section, we provide a brief description of contour segment relations used to assign labels
for contour grouping. Two kinds of relations are defined. First, the probability p a(ia, xj) is set to
be a Gaussian of shape dissimilarity between model segment ia and image segment xj . The shape
dissimilarity is computed by matching sequences of tangent directions at their sample points. To
make our matching scale invariant, we sample each model and image segment with the same number
of sample points. We also consider four binary relations to measure the compatibility between a pair
of model segments and a pair of image segments: d (1)(i, i′) – the maximum distance between the
end-points of two contour segments i and i ′; d(2)(i, i′) – the minimum distance between the end-
points of two contour segments i and i ′; d(3)(i, i′) – the direction from the mid-point of i to the
mid-point of i′; d(4)(i, i′) – the distance between the mid-points of i and i ′. To make our relations
scale invariant, all distances are normalized by the sum of the lengths of segments i and i ′. Then the
compatibility between pair of model segments ia, ib and pair of image segments xj , xk is given by
a mixture of Gaussians:

Ca,b((ia, xj), (ib, xk)) =
4∑

r=1

1
4
N (d(r)(ia, ib) − d(r)(xj , xk), σ(r)) (13)

6 Experimental results
We begin with a comparison between the proposed append MSRF and single level RF. Given an edge
map in Fig. 3(b) extracted by edge detector [8], we employ a low level edge linking method to obtain
edge segments as shown in 3(c), where the 27 edge segments form our label set X = {x 1, . . . , x27}.

Fig. 3(d) illustrates our shape contour model and its two level multiscale structure of 10 contour
segments. Fig. 3(e) shows the result of contour grouping obtained in the framework of the proposed
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append MSRF. The numbers and colors in indicate the assignment of the model segments. The
benefits of the flexible multiscale model structure are clearly visible. Out of 10 model segments,
only 4 have corresponding edge segments in the image, and our approach correctly determined a
label assignments reflecting this fact.

In contrast, this is not the case for a single level RF. Fig. 3(f) shows a model with a fixed single level
structure, and its contour grouping result computed with classical RL can be found in Fig. 3(g).
We observe that model segment 2 on giraffe’s head has no matching contour in the image, but is
nevertheless incorrectly assigned. This wrong assignment influences model contour 4, and leads to
another wrong assignment. In the proposed approach, model contours 2 and 3 in Fig. 3(d) compete
for label assignments. Since contour 3 finds a good match in the image, we correctly obtain (through
our append RV structure) that that there is not match for segment 2.
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Figure 3: (d-g) comparison of results obtain by the proposed MSRF to a single level RF.

By mapping the model segments to the image segments, we enforce the existence of a solution.
Even if no target shape is present in a given image, our approach will ”hallucinate” a matching
configuration of edge segments in the image. A standard alternative in the framework of random
fields is to use a penalty for non-matching (dummy or null nodes). However, this requires several
constants, and it is a highly nontrivial problem to determine their values. In our approach, we
can easily distinguish hallucinated contours from true contours, since when the RF optimization is
completed, we obtain the assignment of contour segments, i.e., we know a global correspondence
between model segments and image segments. Based on this correspondence, we compute global
shape similarity, and discard solutions with low global similarity to the model contour. This requires
only one threshold on global shape similarity, which is relatively easy to set, and our experimental
results verify this fact. In Figs. 4 and 5, we show several examples of contour grouping obtained by
the proposed MSRF method on the ETHZ data set [4]. We only use two contour models, the swan
model (Fig. 1) and the giraffe model (Fig. 3(d)). Their original images are included as shape models
in the ETHZ data set. Model contours are decomposed into segments by introducing break points at
high curvature points. Edge contour segments in the test images have been automatically computed
by a low level edge linking process. Noise and shape variations cause the edge segments to vary a
lot from image to image. We also observe that grouped contours contain internal edge structures.

7 Conclusions

Since edges, and consequently, contour parts vary significantly in real images, it is necessary to make
decomposition of model contours into segments flexible. The proposed multiscale construction
permits us to have a very flexible decomposition that can adapt to different configurations of contour
parts in the image. We introduce a novel multiscale random field interpretation based on the append
operator that leads to efficient optimization. We applied the new algorithm to the ETHZ data set to
illustrate the application potential of the proposed method.
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Figure 4: ETHZ data set grouping results for the Giraffe model.

Figure 5: ETHZ data set grouping results for the swan model.
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