NIPS Proceedingsβ

Global Ranking Using Continuous Conditional Random Fields

Part of: Advances in Neural Information Processing Systems 21 (NIPS 2008)

[PDF] [BibTeX]

Authors

Abstract

This paper studies global ranking problem by learning to rank methods. Conventional learning to rank methods are usually designed for `local ranking', in the sense that the ranking model is defined on a single object, for example, a document in information retrieval. For many applications, this is a very loose approximation. Relations always exist between objects and it is better to define the ranking model as a function on all the objects to be ranked (i.e., the relations are also included). This paper refers to the problem as global ranking and proposes employing a Continuous Conditional Random Fields (CRF) for conducting the learning task. The Continuous CRF model is defined as a conditional probability distribution over ranking scores of objects conditioned on the objects. It can naturally represent the content information of objects as well as the relation information between objects, necessary for global ranking. Taking two specific information retrieval tasks as examples, the paper shows how the Continuous CRF method can perform global ranking better than baselines.