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Abstract

Estimation of three-dimensional articulated human pose and motion from images
is a central problem in computer vision. Much of the previous work has been
limited by the use of crude generative models of humans represented as articu-
lated collections of simple parts such as cylinders. Automatic initialization of
such models has proved difficult and most approaches assume that the size and
shape of the body parts are knowna priori. In this paper we propose a method for
automatically recovering a detailed parametric model of non-rigid body shape and
pose from monocular imagery. Specifically, we represent the body using a param-
eterized triangulated mesh model that is learned from a database of human range
scans. We demonstrate a discriminative method to directly recover the model pa-
rameters from monocular images using a conditional mixture of kernel regressors.
This predicted pose and shape are used to initialize a generative model for more
detailed pose and shape estimation. The resulting approach allows fully automatic
pose and shape recovery from monocular and multi-camera imagery. Experimen-
tal results show that our method is capable of robustly recovering articulated pose,
shape and biometric measurements (e.g.height, weight,etc.) in both calibrated
and uncalibrated camera environments.

1 Introduction

We address the problem of marker-less articulated pose and shape estimation of the human body
from images using a detailed parametric body model [3]. Most prior work on marker-less pose
estimation and tracking has concentrated on the use of generative Baysian methods [8, 15] that
exploit crude models of body shape (e.g.cylinders [8, 15], superquadrics, voxels [7]). We argue
that a richer representation of shape is needed to make future strides in building better generative
models. Discriminative methods [1, 2, 10, 13, 16, 17], more recently introduced specifically for
the pose estimation task, do not address estimation of the body shape; in fact, they are specifically
designed to be invariant to body shape variations. Any real-world system must be able to estimate
both body shape and pose simultaneously.

Discriminative approaches to pose estimation attempt to learn a direct mapping from image fea-
tures to 3D pose from either a single image [1, 14, 17] or multiple approximately calibrated views
[9]. These approaches tend to use silhouettes [1, 9, 14] and sometimes edges [16, 17] as image
features and learn a probabilistic mapping in the form of Nearest Neighbor (NN) search, regression
[1], mixture of regressors [2], mixture of Baysian experts [17], or specialized mappings [14]. While
effective and fast, they are inherently limited by the amount and the quality of the training data.
More importantly they currently do not address estimation of the body shape itself. Body shape es-
timation (independent of the pose) has many applications in biometric authentication and consumer
application domains.
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Simplified models of body shape have a long history in computervision and provide a relatively low
dimensional description of the human form. More detailed triangulated mesh models obtained from
laser range scans have been viewed as too high dimensional for vision applications. Moreover, mesh
models of individuals lack a convenient, low-dimensional, parameterization to allow fitting to new
subjects. In this paper we use the SCAPE model (Shape Completion and Animation of PEople) [3]
which provides a low-dimensional parameterized mesh that is learned from a database of 3D range
scans of different people. The SCAPE model captures correlated body shape deformations of the
body due to the identity of the person and their non-rigid muscle deformation due to articulation.
This model has been shown to allow tractable estimation of parameters from multi-view silhouette
image features [5, 11] and from monocular images in scenes with point lights and cast shadows [4].

In [5] the SCAPE model is projected into multiple calibrated images and an iterative importance
sampling method is used for inference of the pose and shape that best explain the observed sil-
houettes. Alternatively, in [11] visual hulls are constructed from many silhouette images and the
Iterative Closest Point (ICP) algorithm is used to extract the pose by registering the volumetric fea-
tures with SCAPE. Both [5] and [11], however, require manual initialization to bootstrap estimation.
In this paper we substitute discriminative articulated pose and shape estimation in place of manual
initialization. In doing so, we extend the current models for discriminative pose estimation to deal
with the estimation of shape, and couple the discriminative and generative methods for more robust
combined estimation. Few combined discriminative and generative pose estimation methods that
exist [16], typically require temporal image data and do not address shape estimation problem.

For discriminative pose and shape estimation we use a Mixture of Experts model, with kernel linear
regression as experts, to learn a direct probabilistic mapping between monocular silhouette contour
features and the SCAPE parameters. To our knowledge this is the first work that has attempted to
recover the 3D shape of the human body from monocular image directly. While the results are typi-
cally noisy, they are appropriate as initialization for the more precise generative refinement process.
For generative optimization we make use of the method proposed in [5] where the silhouettes are
predicted in multiple views given the pose and shape parameters of the SCAPE model and are com-
pared to the observed silhouettes using a Chamfer distance measure. For training data we use the
SCAPE model to generate pairs of 3D body shapes and projected image silhouettes. Evaluation is
performed on sequences of two subjects performing free-style motion. We are able to predict pose,
shape, and simple biometric measurements for the subjects from images captured by4 synchronized
cameras. We also show results for 3D shape estimation from monocular images.

The contributions of this paper are two fold: (1) we formulate a discriminative model for estimating
the pose and shape directly from monocular image features, and (2) we couple this discriminative
method with a generative stochastic optimization for detailed estimation of pose and the shape.

2 SCAPE Body Model

In this section we briefly introduce the SCAPE body model; for details the reader is referred to [3].
A low-dimensional mesh model is learned using principal component analysis applied to a registered
database of range scans. The SCAPE model is defined by a set of parameterized deformations that
are applied to a reference mesh that consists ofT triangles{∆xt|t ∈ [1, ..., T ]} (hereT = 25, 000).
Each of the triangles in the reference mesh is defined by three vertices in 3D space,(vt,1, vt,2, vt,3),
and has a corresponding associated body part indexpt ∈ [1, ..., P ] (we work with the model that
hasP = 15 body parts corresponding to torso, pelvis, head, and3 segments for each of the upper
and lower extremities). For convenience, the triangles of the mesh are parameterized by the edges,
∆xt = (vt,2 − vt,1, vt,3 − vt,1), instead of the vertices themselves. Estimating the shape and
articulated pose of the body amounts to estimating parameters,Y, of the deformations required to
produce the mesh{∆yt|t ∈ [1, ..., T ]}, the projection of which matches the image evidence. The
state-space of the model can be expressed by a vectorY = {τ, θ, ν}, whereτ ∈ R

3 is the global
3D position for the body,θ ∈ R

37 is the joint-angle parameterization of the articulation with respect
to the skeleton (encoded using Euler angles), andν ∈ R

9 is the shape parameters encoding the
identity-specific shape of the person. Given a set of estimated parametersY a new mesh{∆yt} can
be produced using:

∆yt = Rpt
(θ)S(ν)Q(Rpt

(θ))∆xt (1)
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Figure 1:Silhouette contour descriptors. Radial Distance Function (RDF) encoding of the silhou-
ette contour is illustrated in (a); Shape Context (SC) encoding of a contour sample point in (b).

whereRpt
(θ) is the rigid3 × 3 rotation matrix for a partpt and is a function of the joint anglesθ;

S(ν) is the linear3×3 transformation matrix modeling subject-specific shape variation as a function
of the shape-space parametersν; Q(Rpt

(θ)) is a3× 3 residual transformation corresponding to the
non-rigid articulation-induced deformations (e.g.bulging of muscles). Notice, thatQ() is simply
a learned linear function of the rigid rotation and has no independent parameters. To learnQ()
we minimize the residual in the least-squared sense between the set of70 registered scans of one
person under different (but known) articulations. It is also worth mentioning that body shape linear
deformation sub-space,S(ν) = Usν + µs, is learned from a set of10 meshes of different people
in full correspondence using PCA; henceν can be interpreted as a vector of linear coefficients
corresponding to eigen-directions of the shape-space that characterize a given body shape.

3 Features

In this work we make use of silhouette features for both discriminative and generative estimation of
pose and shape. Silhouettes are commonly used for human pose estimation [1, 2, 13, 15, 17]; while
limited in their representational power, they are easy to estimate from images and fast to synthesize
from a mesh model. The framework introduced here, however, is general and can easily be extended
to incorporate richer features (e.g.edges [15], dense region descriptors [16] such as SIFT or HOG,
or hierarchical descriptors [10] like HMAX, Hyperfeatures, Spatial Pyramid). The use of such richer
feature representations will likely improve both discriminative and generative estimation.

Histograms of shape context. Shape contexts (SC) [6] are rich descriptors based on the local
shape-based histograms of the contour points sampled from the external boundary of the silhouette.
At every sampled boundary point the shape context descriptor is parameterized by the number of
orientation bins,φ, number of radial-distance bins,r, and the minimum and maximum radial dis-
tances denoted byrin androut respectively. As in [1] we achieve scale invariance by makingrout

a function of the overall silhouette height and normalizing the individual shape context histogram
by the sum over all histogram bins. Assuming thatN contour points are chosen, at random, to en-
code the silhouette, the full feature vector can be represented usingφrN bin histogram. Even for
moderate values ofN this produces high dimensional feature vectors that are hard to deal with.

To reduce the silhouette representation to a more manageable size, a secondary histogramming was
introduced by Agarwal and Triggs in [1]. In this,bag-of-words style model, the shape context space
is vector quantized into a set ofK clusters (a.k.a.codewords). TheK = 100 center codebook is
learned by running k-means clustering on the combined set of shape context vectors obtained from
the large set of training silhouettes. Once the codebook is learned, the quantizedK-dimensional
histograms are obtained by voting into the histogram bins corresponding to codebook entries. Soft
voting has been shown [1] to reduce effects of spatial quantization. The final descriptorXsc ∈ R

K

is normalized to unit length, to ensure that silhouettes that contain different number of contour points
can be compared.

The resulting codebook shape context representation is translation and scale invariant by definition.
Following the prior work [1, 13] we letφ = 12, r = 5, rin = 3, androut = κh whereh is the height
of the silhouette andκ is typically 1

4 ensuring integration of contour points over regions roughly
similar to the limb size [1]. For shape estimation, we found that combining features across multiple
spatial scales (e.g.κ = { 1

4 , 1
2 , ...}) to be more effective.
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Radial distance function. The Radial Distance Function (RDF) features are defined by a feature
vectorXrdf = {pc, ||p1−pc||, ||p2−pc||, ..., ||pN−pc||}, wherepc ∈ R

2 is the centroid of the image
silhouette, andpi is the point on the silhouette outer contour; hence||pi − pc|| ∈ R measures the
maximal object extent in the particular direction denoted byi from the centroid. For all experiments,
we useN = 100 points, resulting in theXrdf ∈ R

102. We explicitly ensure that the dimensionality
of the RDF descriptor is comparable to that of shape context introduced above. Unlike the shape
context descriptor, the RDF feature vector is neither scale nor translation invariant. Hence, RDF
features are only suited for applications where camera calibration is known and fixed.

4 Discriminative estimation of pose and shape

To produce initial estimates for the body pose and/or shape in 3D from image features, we need to
model the conditional distributionp(Y|X) of the 3D body stateY given the set of 2D featuresX.
Intuitively this conditional mapping should be related to the inverse of the camera projection matrix
and, as with many inverse problems, is highly ambiguous. To model this non-linear relationship we
use a Mixtures of Experts (MoE) model to represent the conditionals [2, 17].

The parameters of the MoE model are learned by maximizing the log-likelihood of the training data
setD = {(x(1), y(1)), ..., (x(N), y(N))} consisting ofN input-output pairs(x(i), y(i)). We use an
iterative Expectation Maximization (EM) algorithm, based on type-II maximum likelihood, to learn
parameters of the MoE. Our model for the conditional can be written as:

p(Y|X) ∝
M
∑

k=1

pe,k(Y|X,Θe,k)pg,k(k|X,Θg,k) (2)

wherepe,k is the probability of choosing poseY given the inputX according to thek-th expert, and
pg,k is the probability of that input being assigned to thek-th expert using an input sensitive gating
network; in both casesΘ represents the parameters of the mixture and gate distributions respectively.

For simplicity and to reduce complexity of the experts we choose kernel linear regression with
constant offset,Y = βX + α, as our expert model, which allows us to solve for the parameters
Θe,k = {βk, αk,Λk} analytically using the weighted linear regression, wherepe,k(Y|X,Θe,k) =

1√
(2π)n|Λk|

exp− 1
2∆T

k
Λ−1

k
∆k , and∆k = Y − βkX − αk.

Pose estimation is a high dimensional and ill-conditioned problem, so simple least squares estima-
tion of the linear regression matrix parameters typically produces severe over-fitting and poor gener-
alization. To reduce this, we add smoothness constraints on the learned mapping. We use a damped
regularization termR(β) = λ||β||2 that penalizes large values in the coefficient matrixβ, whereλ is
a regularization parameter. Larger values ofλ will result in overdamping, where the solution will be
underestimated, small values ofλ will result in overfitting and possibly ill-conditioning. Since the
solution of the ridge regressors is not symmetric under the scaling of the inputs, we normalize the
inputs{x(1), x(2), ..., x(N)} by the standard deviation in each dimension respectively before solving.

Weighted ridge regression solution for the parametersβk andαk can be written in matrix notation
as follows,

[

βk

αk

]T

=

[

DT
X

diag(Zk) DX + diag(λ) Zk

ZT
k ZT

k Zk

]−1 [

DT
X

ZT
k

]

diag(Zk) DY, (3)

whereZk = [z
(1)
k , z

(2)
k , ..., z

(N)
k ]T is the vector of ownership weights described later in the section

and diag(Zk) is diagonal matrix withZk on the diagonal;DX = [x(1), x(2), ..., x(N)] andDY =
[y(1), y(2), ..., y(N)] are vectors of inputs and outputs from the training dataD.

Maximization for the gate parameters can be done analytically as well. Given the gate model,
pg,k(k|X,Θg,k) = 1√

(2π)n|Σk|
exp− 1

2 (X−µk)T Σ−1
k

(X−µk) maximization of the gate parameters

Θg,k = {Σk, µk} becomes similar to the mixture of Gaussians estimation, whereµk =
∑N

n=1 z
(n)
k x(n)/

∑N
n=1 z

(n)
k , Σk = 1

P

N

n=1 z
(n)
k

∑N
n=1 z

(n)
k [x(n) − µk][x(n) − µk]T and zn

k is the
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estimated ownership weight of the examplen by the expertk estimated by expectation

z
(n)
k =

pe,k(y(n)|x(n),Θe,k)pg,k(k|x(n),Θg,k)
∑M

j=1 pe,j(y(n)|x(n),Θe,j)pg,j(j|x(n),Θg,j)
. (4)

The above outlines the full EM procedure for the MoE model. We learn three separate models for
shape,p(ν|X), articulated pose,p(θ|X) and global position,p(τ |X). Similar to [2] we initialize the
EM learning by clustering the output 3D poses using the K-means procedure.

Implementation details. For articulated pose and shape we experimented with using both RDF
and SC features (global position requires RDF features since SC is location and scale invariant).
SC features tend to work better for pose estimation where as RDF features perform better for shape
estimation. Hence, we learnp(ν|Xrdf ), p(θ|Xsc) andp(τ |Xrdf ). In cases where calibration is
unavailable, we estimate the shape usingp(ν|Xsc) which tends to produce reasonable results but
cannot estimate the overall height. We estimate the number of mixture components,M , and regular-
ization parameter,λ, by learning a number of models and cross validating on the withheld dataset.

5 Generative stochastic optimization of pose and shape

Generative stochastic state estimation, as in [5], is handled within an iterative importance sampling
framework [8]. To this end, we represent the posterior distribution over the state (that includes
both pose and shape),p(Y|I) ∝ p(I|Y)p(Y), using a set ofN weighted samples{yi, πi}N

i=1,
whereyi ∼ q(Y) is a sample drawn from the importance functionq(Y) andπi ∝ p(I|yi)p(yi)

q(yi)

is an associated normalized weight. As in [5] we make no rigorous probabilistic claims about the
generative model, but rather use it as effective means of performing stochastic search. As required
by the annealing framework, we define a set of importance functionsqk(Y) from which we draw
samples at each respective iterationk. We define importance functions recursively using a smoothed
version of posterior from the previous iterationqk+1(Y) =

∑N
i=1 π

(k)
i N (y

(k)
i ,Σ(k)), encoded using

a kernel Gaussian density with iteration dependent bandwidth parameterΣ(k). To avoid effects of
local optima, the likelihood is annealed as follows:pk(I|Y) = [p(I|Y)]Tk at every iteration, where
Tk is the temperature parameter. As a result, effects of peaks in the likelihood are introduced slowly.

To initiate the stochastic search an initial distribution is needed. The high dimensionality of the
state space requires this initial distribution to be relatively close to the solution in order to reach
convergence. Here we make use of the discriminative pose and shape estimate from Section 4 to
give us the initial distribution for the posterior. In particular, given the discriminative model for the
shape,p(ν|X), position,p(τ |X), and articulated pose,p(θ|X), of the body, we can let (with slight
abuse of notation)y(0)

i ∼ [p(τ |X), p(θ|X), p(ν|X)] andπ
(0)
i = 1/N for i ∈ [1, ..., N ].

The outlined stochastic optimization framework also requires an image likelihood function,p(I|Y),
that measures how well our model under a given stateY matches the image evidence,I, obtained
from one or multiple synchronized cameras. We adopt the likelihood function introduced in [5]
that measures the similarity between observed and hypothesized silhouettes. For a given camera
view, a foreground silhouette is computed using a shadow-suppressing background subtraction pro-
cedure and is compared to the silhouette obtained by projecting the SCAPE model subject to the
hypothesized state into the image plane (given calibration parameters of the camera). Pixels in the
non-overlapping regions are penalized by the distance to the closest contour point of the silhouette.
This is made efficient by the use of Chamfer distance map precomputed for both silhouettes.

6 Experiments

Datasets. In this paper we make use of3 different datasets. Thetraining dataset, used to learn
discriminative MoE models and codeword dictionary for SC, was generated by synthesizing3000
silhouette images obtained by projecting corresponding SCAPE body models into an image plane
using calibration parameters of the camera. SCAPE body models, in turn, were generated by ran-
domly sampling the pose from a database of motion capture data (consisting of generally non-cyclic
random motions) and the body shape coefficient from a uniform distribution centered at the mean
shape. Similar synthetictest dataset was constructed consisting of597 silhouette-SCAPE body
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Figure 2: Discriminative estimation of weight loss. Two images of a subjectbefore and after
weight loss are shown in (a) on the left and right respectively. The images were downloaded from
the web (Google) and manually segmented (b). The estimated shape and pose obtained by our
discriminative estimation procedure is shown in (c). In bottom row, we manually rotated the model
90 degrees for better visibility of the shape variation. Since camera calibration is unavailable, we
usep(ν|Xsc) and normalize thebefore andafter shapes to the same reference height. Our method
estimated that the person illustrated in the top row lost22 lb and the one illustrated in the bottom
row – 32 lb; web-reported weight loss for the two subjects was24 lb and64 lb respectively. Notice
that the neutral posture assumed in images was not present in our training data set, causing visible
artifacts with estimation of the arm pose. Also, the bottom example pushes the limits of our current
shape model which was trained using only10 scans of people, none close to the desired body shape.

model pairs. In addition, we collected areal dataset consisting of hardware-synchronized motion
capture and video collected using4 cameras. Two subjects were captured performing roughly the
same class of motions as in the training dataset.

Discriminative estimation of shape. Results of using the MoE model, similar to the one introduced
here, for pose estimation have previously been reported in [2] and [17]. Our experience with the
articulated pose estimation was similar and we omit supporting experiments due to lack of space.
For discriminative estimation of shape we quantitatively compared SC and RDF features, by training
two MoE modelsp(ν|Xsc) and p(ν|Xrdf ), and found the latter to perform better when camera
calibration is available (on the average we achieve a19.3 % performance increase over simply using
the mean shape). We attribute the superior performance of RDF features to their sensitivity to the
silhouette position and scale, that allows for better estimation of overall height of the body.

Given the shape we can also estimate the volume of the body and assuming constant density of
water, compute the weight of the person. To illustrate this we estimate approximate weight loss of
a person from monocular uncalibrated images (see Figure 2). Please note that this application is a
proof of concept and not a rigorous experiment1. In principle, the SCAPE model is not ideal for
weight calculations, since non-rigid deformations caused by articulations of the body will result in
(unnatural) variations in weight. In practice, however, we found such variations produce relatively
minor artifacts. The weight calculations are, on the other hand, very sensitive to the body shape.

Combining discriminative and generative estimation. Lastly we tested the performance of the
combined discriminative and generative framework by estimating articulated pose, shape and bio-
metric measurements for people in ourreal dataset. Results of biometric measurement estimates
can be seen in Figure 3; corresponding visual illustration of results is shown in Figure 4.

Analysis of errors. Rarely our system does produce poor pose and/or shape estimates. Typically
these cases can be classified into two categories: (1) minor errors that only effect the pose and are
artifacts of local optima or (2) more significant errors that effect the shape and result from poor initial
distribution over the state produced by the discriminative method. The latter arise as a result of180–
degree view ambiguity and/or pose configuration ambiguities, due to symmetry, in the silhouettes.

1The “ground truth” weight change here is self reported and gathered from the Internet.
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Discriminative Disc. + Generative GT + Generative
Biometric Feature Actual Mean Std Mean Std Mean Std

A
(3

4) Height (mm) 1780 1716.1 41.9 1776.2 43.8 1796.9 22.9
Arm Span (mm) 1597 1553.6 39.7 1597.3 58.0 1607.7 30.7
Weight (kg) 88 83.62 8.94 83.37 8.01 85.83 3.73

B
(3

0) Height (mm) 1825 1703.8 88.8 1751.0 95.2 1844.1 63.8
Arm Span (mm) 1668 1537.7 69.2 1547.5 91.4 1659.0 29.1
Weight (kg) 63 80.63 18.53 64.98 9.27 66.33 4.69

Figure 3:Estimating basic biometric measurements. Figure illustrates basic biometric measure-
ments (height, arm span3and weight) recovered for two subjects A and B. Mean and standard devi-
ation reported over 34 and 30 frames for subject A and B respectively. Every25-th frame from two
sequence obtained using4 synchronized cameras was chosen for estimation. The actual measured
values for the two subjects are shown in the left column. Estimates obtained using discriminative
only and discriminative followed by generative shape estimation methods are reported in the next
two columns. Discriminative method used only one view for estimation, where as generative method
used all4 views to obtain a better fit. Last column reports estimates obtained using ground truth pose
and mean shape as initialization for the generative fit (this is the algorithm proposed in [5]). Notice
that generative estimation significantly refines the discriminative estimates. In addition, our ap-
proach, that unlike [5] does not require manual initialization, performs comparably (and sometimes
marginally better than [5]) in terms of mean performance (but has roughly twice the variance).

7 Discussion and Conclusions

We have presented a method for automatic estimation of articulated pose and shape of people from
images. Our approach goes beyond prior work in that it is able to estimate a detailed parametric
model (SCAPE) directly from images without requiring manual intervention or initialization. We
found that the discriminative model produced an effective initialization for generative optimization
procedure and that biometric measurements from the recovered shape were comparable to those pro-
duced by prior approaches that required manual initialization [5]. We also introduced and addressed
the problem of discriminative estimation of shape from monocular calibrated and un-calibrated im-
ages. More accurate shape estimates from monocular data will require richer image descriptors.

A number of straightforward extensions to our model will likely yeld immediate improvement in
performance. Among such, is the use of temporal consistency in the discriminative pose (and per-
haps shape) estimation [17] and dense image descriptors [10]. In addition, in this work we estimated
the shape space of the SCAPE model from only10 body scans, as a result the learned shape space
is rather limited in its expressive power. We belive some of the artifacts of this can be observed in
Figure 2 where the weight of the heavier woman is underestimated.

Acknowledgments. This work was supported by NSF grants IIS-0534858 and IIS-0535075 and a
gift from Intel Corp. We also thank James Davis and Dragomir Anguelov for discussions and data.
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