NIPS Proceedingsβ

Receptive Fields without Spike-Triggering

Part of: Advances in Neural Information Processing Systems 20 (NIPS 2007)

[PDF] [BibTeX]

Authors

Abstract

Stimulus selectivity of sensory neurons is often characterized by estimating their receptive field properties such as orientation selectivity. Receptive fields are usually derived from the mean (or covariance) of the spike-triggered stimulus ensemble. This approach treats each spike as an independent message but does not take into account that information might be conveyed through patterns of neural activity that are distributed across space or time. Can we find a concise description for the processing of a whole population of neurons analogous to the receptive field for single neurons? Here, we present a generalization of the linear receptive field which is not bound to be triggered on individual spikes but can be meaningfully linked to distributed response patterns. More precisely, we seek to identify those stimulus features and the corresponding patterns of neural activity that are most reliably coupled. We use an extension of reverse-correlation methods based on canonical correlation analysis. The resulting population receptive fields span the subspace of stimuli that is most informative about the population response. We evaluate our approach using both neuronal models and multi-electrode recordings from rabbit retinal ganglion cells. We show how the model can be extended to capture nonlinear stimulus-response relationships using kernel canonical correlation analysis, which makes it possible to test different coding mechanisms. Our technique can also be used to calculate receptive fields from multi-dimensional neural measurements such as those obtained from dynamic imaging methods.