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Abstract

We propose a new approach for dealing with the estimation of the location of
change-points in one-dimensional piecewise constant signals observed in white
noise. Our approach consists in reframing this task in a variable selection con-
text. We use a penalized least-squares criterion with a`1-type penalty for this
purpose. We prove some theoretical results on the estimated change-points and
on the underlying piecewise constant estimated function. Then, we explain how
to implement this method in practice by combining the LAR algorithm and a re-
duced version of the dynamic programming algorithm and we apply it to synthetic
and real data.

1 Introduction

Change-points detection tasks are pervasive in various fields, ranging from audio [10] to EEG seg-
mentation [5]. The goal is to partition a signal into several homogeneous segments of variable
durations, in which some quantity remains approximately constant over time. This issue was ad-
dressed in a large literature (see [20] [11]), where the problem was tackled both from an online
(sequential) [1] and an off-line (retrospective) [5] points of view. Most off-line approaches rely on a
Dynamic Programming algorithm (DP), allowing to retrieveK change-points withinn observations
of a signal with a complexity ofO(Kn2) in time [11]. Such a feature refrains practitioners from
applying these methods to large datasets. Moreover, one often observes a sub-optimal behavior of
the rawDP algorithm on real datasets.

We suggest here to slightly depart from this line of research, by focusing on a reformulation of
change-point estimation in a variable selection framework. Then, estimating change-point loca-
tions off-line turns into performing variable selection on dummy variables representing all possible
change-point locations. This allows us to take advantage of the latest theoretical [23], [3] and prac-
tical [7] advances in regression with Lasso penalty. Indeed, Lasso provides us with a very efficient
method for selecting potential change-point locations. This selection is then refined by using theDP
algorithm to estimate the change-point locations.

Let us outline the paper. In Section 2, we first describe our theoretical reformulation of off-line
change-point estimation as regression with a Lasso penalty. Then, we show that the estimated mag-
nitude of jumps are close in mean, in a sense to be precized, to the true magnitude of jumps. We
also give a non asymptotic inequality to upper-bound the`2-loss of the true underlying piecewise
constant function and the estimated one. We describe our algorithm in Section 3. In Section 4, we
discuss related works. Finally, we provide experimental evidence of the relevance of our approach.
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2 Theoretical approach

2.1 Framework

We describe, in this section, how off-line change-point estimation can be cast as a variable selection
problem. Off-line estimation of change-point locations within a signal(Yt) consists in estimating
theτ?

k ’s in the following model:

Yt = µ?
k + εt, t = 1, . . . , n such thatτ?

k−1 + 1 ≤ t ≤ τ?
k , 1 ≤ k ≤ K? with τ?

0 = 0, (1)

whereεt are i.i.d zero-mean random variables with finite variance. This problem can be reformulated
as follows. Let us consider:

Yn = Xnβn + εn (2)

whereYn is a n × 1 vector of observations,Xn is a n × n lower triangular matrix with nonzero
elements equal to one andεn = (εn

1 , . . . , εn
n)′ is a zero-mean random vector such that theεn

j ’s
are i.i.d with finite variance. As forβn, it is a n × 1 vector having all its components equal to
zero except those corresponding to the change-point instants. The above multiple change-point
estimation problem (1) can thus be tackled as a variable selection one:

Minimize
β

‖Yn − Xnβ‖2

n subject to‖β‖1 ≤ s , (3)

where‖u‖1 and‖u‖n are defined for a vectoru = (u1, . . . , un) ∈ R
n by ‖u‖1 =

∑n
j=1

|uj |
and‖u‖2

n = n−1
∑n

j=1
u2

j respectively. Indeed, the above formulation amounts to minimize the
following counterpart objective in model (1):

Minimize
µ1,...,µn

1

n

n
∑

t=1

(Yt − µt)
2 subject to

n−1
∑

t=1

|µt+1 − µt| ≤ s, (4)

which consists in imposing aǹ1-constraint on the magnitude of jumps. The underpinning insight
is the sparsity-enforcing property of the`1-constraint, which is expected to give a sparse vector,
whose non-zero components would match with those ofβn and thus with change-point locations.
It is related to the popular Least Absolute Shrinkage eStimatOr (LASSO) in least-square regression
of [21], used for efficient variable selection.

In the next section, we provide two results supporting the use of the formulation (3) for off-line
multiple change-point estimation. We show that estimates of jumps minimizing (3) are consistent
in mean, and we provide a non asymptotic upper bound for the`2 loss of the underlying estimated
piecewise constant function and the true underlying piecewise function. This inequality shows that,
at a precized rate, the estimated piecewise constant function tends to the true piecewise constant
function with a probability tending to one.

2.2 Main results

In this section, we shall study the properties of the solutions of the problem (3) defined by

β̂n(λ) = Arg min
β

{

‖Yn − Xnβ‖2

n + λ‖β‖1

}

. (5)

Let us now introduce the notation sign. It maps positive entry to 1, negative entry to -1 and a null
entry to zero. Let

A = {k, βn
k 6= 0} andA = {1, . . . , n}\A (6)

and letCn the covariance matrix be defined by

Cn = n−1X ′
nXn . (7)

In a general regression framework, [18] recall that, with probability tending to one,β̂n(λ) andβn

have the same sign for a well-chosenλ, only if the following condition holds element-wise:
∣

∣Cn
AA

(Cn
AA)−1sign(βn

A)
∣

∣ < 1, (8)

whereCn
IJ is a sub-matrix ofCn obtained by keeping rows with index in the setI and columns with

index inJ . The vectorβn
A is defined byβn

A = (βn
k )k∈A. The condition (8) is not fulfilled in the
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change-point framework implying that we cannot have a perfect estimation of the change-points as
it is already known, see [13]. But, following [18] and [3], we can prove some consistency results,
see Propositions 1 and 2 below.

In the following, we shall assume that the number of break points is equal toK?.

The following proposition ensures that for a large enough value ofn the estimated change-point
locations are close to the true change-points.

Proposition 1. Assume that the observations(Yn) are given by(2) and that theεn
j ’s are centered.

If λ = λn is such thatλn
√

n → 0 asn tends to infinity then

‖E(β̂n(λn)) − βn‖n → 0 .

Proof. We shall follow the proof of Theorem 1 in [18]. For this, we denoteβn(λ) the estimator
β̂n(λ) under the absence of noise andγn(λ) the bias associated to the Lasso estimator:γn(λ) =
βn(λ) − βn. For notational simplicity, we shall writeγ instead ofγn(λ). Note thatγ satisfies the
following minimization:γ = Arg minζ∈Rn f(ζ) , where

f(ζ) = ζ ′Cnζ + λ
∑

k∈A

|βn
k + ζk| + λ

∑

k∈Ā

|ζk| .

Sincef(γ) ≤ f(0), we get

γ′Cnγ + λ
∑

k∈A

|βn
k + γk| + λ

∑

k∈Ā

|γk| ≤ λ
∑

k∈A

|βn
k | .

We thus obtain using the Cauchy-Schwarz inequality the following upper bound

γ′Cnγ ≤ λ
∑

k∈A

|γk| ≤ λ
√

K?

(

n
∑

k=1

|γk|2
)1/2

.

Using thatγ′Cnγ ≥ n−1
∑n

k=1
|γk|2, we obtain:‖γ‖n ≤ λ

√
nK?.

The following proposition ensures, thanks to a non asymptotic result, that the estimated underlying
piecewise function is close to the true piecewise constant function.

Proposition 2. Assume that the observations(Yn) are given by(2) and that theεn
j ’s are centered iid

Gaussian random variables with varianceσ2 > 0. Assume also that(βn
k )k∈A belong to(βmin, βmax)

whereβmin > 0. For all n ≥ 1 andA >
√

2 then, with a probability larger than1 − n1−A2/2, if
λn = Aσ

√

log n/n,

‖Xn(β̂n(λn) − βn)‖2
n ≤ 2AσβmaxK?

√

log n

n
.

Proof. By definition ofβ̂n(λ) in (5) as a minimizer of a criterion, we have

‖Yn − Xnβ̂n(λ)‖2
n + λ‖β̂n(λ)‖1 ≤ ‖Yn − Xnβn‖2

n + λ‖βn‖1 .

Using (2), we get

‖Xn(βn − β̂n(λ))‖2
n +

2

n
(βn − β̂n(λ))′X ′

nεn + λ

n
∑

j=1

|β̂n
j (λ)| ≤ λ

n
∑

j=1

|βn
j | .

Thus,

‖Xn(βn − β̂n(λ))‖2
n ≤ 2

n
(β̂n(λ) − βn)′X ′

nεn + λ
∑

j∈A

(|βn
j | − |β̂n

j (λ)|) − λ
∑

j∈Ā

|β̂n
j (λ)| .

Observe that

2

n
(β̂n(λ) − βn)′X ′

nεn = 2
n

∑

j=1

(β̂n
j (λ) − βn

j )





1

n

n
∑

i=j

εn
i



 .
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Let us define the eventE =
⋂n

j=1

{

n−1

∣

∣

∣

∑n
i=j εn

i

∣

∣

∣ ≤ λ
}

. Then, using the fact that theεn
i ’s are iid

zero-mean Gaussian random variables, we obtain

P(Ē) ≤
n

∑

j=1

P



n−1

∣

∣

∣

∣

∣

∣

n
∑

i=j

εn
i

∣

∣

∣

∣

∣

∣

> λ



 ≤
n

∑

j=1

exp

(

− n2λ2

2σ2(n − j + 1)

)

.

Thus, ifλ = λn = Aσ
√

log n/n,

P(Ē) ≤ n1−A2/2 .

With a probability larger than1 − n1−A2/2, we get

‖Xn(βn − β̂n(λ))‖2
n ≤ λn

n
∑

j=1

|β̂n
j (λ) − βn

j | + λn

∑

j∈A

(|βn
j | − |β̂n

j |) − λn

∑

j∈Ā

|β̂n
j | .

We thus obtain with a probability larger than1 − n1−A2/2 the following upper bound

‖Xn(βn − β̂n(λ))‖2
n ≤ 2λn

∑

j∈A

|βn
j | = 2Aσ

√

log n

n

∑

j∈A

|βn
j | ≤ 2AσβmaxK?

√

log n

n
.

3 Practical approach

The previous results need to be efficiently implemented to cope with finite datasets. Our algorithm,
calledCachalot (CAtching CHAnge-points with LassO), can be split into the following three steps
described hereafter.

Estimation with a Lasso penalty We compute the firstKmax non-null coefficientŝβτ1
, . . . , β̂τKmax

on the regularization path of the LASSO problem (3). The LAR/LASSO algorithm, as described in
[7], provides an efficient algorithm to compute the entire regularization path for the LASSO problem.
Since

∑

j |βj | ≤ s is a sparsity-enforcing constraint, the set{j, β̂j 6= 0} = {τj} becomes larger as
we run through the regularization path. We shall denote byS theKmax-selected variables:

S = {τ1, . . . , τKmax} . (9)

The computational complexity of theKmax-long regularization path of LASSO solutions is
O(K3

max + K2
maxn). Most of the time, we can see that the Lasso effectively catches the true change-

point but also irrelevant change-points at the vicinity of the true ones. Therefore, we propose to
refine the set of change-points caught by the Lasso by performing a post-selection.

Reduced Dynamic Programming algorithm One can consider several strategies to remove ir-
relevant change-points from the ones retrieved by the Lasso. Among them, since usually in appli-
cations, one is only interested in change-point estimation up to a given accuracy, we could launch
the Lasso on a subsample of the signal. Here, we suggest to perform post-selection by using the
standard Dynamic Programming algorithm (DP) thoroughly described in [11] (Chapter 12, p. 450)
but on the reduced setS instead of{1, . . . , n}. This algorithm allows one to efficiently minimize
the following objective for eachK in {1, . . . ,Kmax}:

J(K) = Min
τ1<···<τK

s.t τ1,...,τK∈S

K
∑

k=1

τk
∑

i=τk−1+1

(Yi − µ̂k)2, (10)

S being defined in (9) and outputs for eachK, the corresponding subset of change-points
(τ̂1, . . . , τ̂K). The DP algorithm has a computational complexity ofO(Kmaxn

2) if we look for
at mostKmax change-points within the signal. Here, our reducedDP calculations (rDP) scales
as O(KmaxK

2
max) where Kmax is the maximum number of change-points/variables selected by

LAR/LASSO algorithm. Since typicallyKmax ¿ n, our method thus provides a reduction of the
computational burden associated with the classical change-points detection approach which consists
in running theDP algorithm over all then observations.
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Selecting the number of change-points The point is now to select the adequate number of
change-points. Asn → ∞, according to [15], the ratioρk = J(k + 1)/J(k) should show different
qualitative behavior whenk 6 K? and whenk > K?, K? being the true number of change-points.
In particular,ρk ≥ Cn for k > K?, whereCn → 1 asn → ∞. Actually we found out thatCn was
close to1, even in small-sample settings, for various experimental designs in terms of noise variance
and true number of change-points. Hence, conciliating theoretical guidance in large-sample setting
and experimental findings in fixed-sample setting, we suggest the following rule of thumb for select-
ing the number of change-pointŝK : K̂ = Mink≥1 {ρk ≥ 1 − ν} , whereρk = J(k + 1)/J(k).

Cachalot Algorithm
Input

• Vector of observationsY ∈ R
n

• Upper boundKmax on the number of change-points

• Model selection thresholdν

Processing

1. Compute the firstKmax non-null coefficients(βτ1
, . . . , βτKmax

) on the regularization path
with the LAR/LASSO algorithm.

2. Launch therDP algorithm on the set of potential change-points(τ1, . . . , τKmax).

3. Select the smallest subset of the potential change-points(τ1, . . . , τKmax) selected by therDP
algorithm for whichρk ≥ 1 − ν.

Output Change-point locations estimatesτ̂1, . . . , τ̂K̂ .

To illustrate our algorithm, we consider observations(Yn) satisfying model (2) with
(β30, β50, β70, β90) = (5,−3, 4,−2), the otherβj being equal to zero,n = 100 andεn a Gaus-
sian random vector with a covariance matrix equal to Id, Id being an × n identity matrix. The
set of the first nine active variables caught by the Lasso along the regularization path,i.e. the set
{k, β̂k 6= 0} is given in this case by:S = {21, 23, 28, 29, 30, 50, 69, 70, 90}. The setS contains
the true change-points but also irrelevant ones close to the true change-points. Moreover the most
significant variables do not necessarily appear at the beginning. This supports the use of the re-
duced version of theDP algorithm hereafter. Table 1 gathers theJ(K),K = 1, . . . ,Kmax and the
corresponding(τ̂1, . . . , τ̂K).

Table 1: Toy example: The empirical riskJ and the estimated change-points as a function of the
possible number of change-pointsK

K J(K) (τ̂1, . . . , τ̂K)
0 696.28 ∅

1 249.24 30
2 209.94 (30,70)
3 146.29 (30,50,69)
4 120.21 (30,50,70,90)
5 118.22 (30,50,69,70,90)
6 116.97 (21,30,50,69,70,90)
7 116.66 (21,29,30,50,69,70,90)
8 116.65 (21,23,29,30,50,69,70,90)
9 116.64 (21,23,28,29,30,50,69,70,90)

The different values of the ratioρk for k = 0, . . . , 8 of the model selection procedure are given in
Table 2. Here we tookν = 0.05. We conclude, as expected, thatK̂ = 4 and that the change-points
are(30, 50, 70, 90), thanks to the results obtained in Table 1.

4 Discussion

Off-line multiple change-point estimation has recently received much attention in theoretical works,
both in a non-asymptotic and in an asymptotic setting by [17] and [13] respectively. From a practi-
cal point of view, retrieving the set of change-point locations{τ?

1 , . . . , τ?
K} is challenging, since it is
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Table 2: Toy example: The values of the ratio(ρk = J(k + 1)/J(k), k = 0, . . . , 8)

k 0 1 2 3 4 5 6 7 8
ρk 0.3580 0.8423 0.6968 0.8218 0.9834 0.9894 0.9974 0.9999 1.0000

plagued by the curse of dimensionality. Indeed, all of then observation times have to be considered
as potential change-point instants. Yet, a dynamic programming algorithm (DP), proposed by [9]
and [2], allows to explore all the configurations with a complexity ofO(n3) in time. Then selecting
the number of change-points is usually performed thanks to a Schwarz-like penaltyλnK, where
λn has to be calibrated on data [13] [12], or a penaltyK(a + b log(n/K)) as in [17] [14], where
a andb are data-driven as well. We should also mention that an abundant literature tackles both
change-point estimation and model selection issues from a Bayesian point of view (see [20] [8] and
references therein). All approaches cited above rely onDP, or variants in Bayesian settings, and
hence yield a computational complexity ofO(n3), which makes them inappropriate for very large-
scale signal segmentation. Moreover, despite its theoretical optimality in a maximum likelihood
framework, rawDP may sometimes have poor performances when applied to very noisy obser-
vations. Our alternative framework for multiple change-point estimation was previously elusively
mentioned several times, e.g. in [16] [4] [19]. However up to our knowledge neither successful
practical implementation nor theoretical grounding was given so far to support such an approach
for change-point estimation. Let us also mention [22], where the Fused Lasso is applied in a simi-
lar yet different way to perform hot-spot detection. However, this approach includes an additional
penalty, penalizing departures from the overall mean of the observations, and should thus rather be
considered as an outlier detection method.

5 Comparison with other methods

5.1 Synthetic data

We propose to compare our algorithm with a recent method based on a penalized least-squares crite-
rion studied by [12]. The main difficulty in such approaches is the choice of the constants appearing
in the penalty. In [12], a very efficient approach to overcome this difficulty has been proposed: the
choice of the constants is completely data-driven and has been implemented in a toolbox available
online athttp://www.math.u-psud.fr/˜lavielle/programs/index.html.

In the following, we benchmark our algorithm:A together with the latter method:B. We shall
use Recall and Precision as relevant performance measures to analyze the previous two algorithms.
More precisely, the Recall corresponds to the ratio of change-points retrieved by a method with
those really present in the data. As for the Precision, it corresponds to the number of change-points
retrieved divided by the number of suggested change-points. We shall also estimate the probability
of false alarm corresponding to the number of suggested change-points which are not present in the
signal divided by the number of true change-points.

To compute the precision and the recall of methodsA andB, we ran Monte-Carlo experiments. More
precisely, we sampled 30 configurations of change-points for each real number of change-pointsK?

equal to 5, 10, 15 and 20 within a signal containing 500 observations. Change-points were at least
distant of 10 observations. We sampled 30 configurations of levels from a Gaussian distribution.
We used the following setting for the noise: for each configuration of change-points and levels,
we synthesized a Gaussian white noise such that the standard deviation is set to a multiple of the
minimum magnitude jump between two contiguous segments, i.e.σ = m Mink(µ∗

k+1
− µ∗

k), µ?
k

being the level of thekth segment. The number of noise replications was set to 10.

As shown in Tables 3, 4 and 5 below, our methodA yields competitive results compared to method
B with 1 − ν = 0.99 andKmax = 50. Performances in recall are comparable whereas methodA
provides better results than methodB in terms of precision and false alarm rate.

5.2 Real data

In this section, we propose to apply our method previously described to real data which have already
been analyzed by Bayesian methods: the well-log data which are described in [20] and [6] and
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Table 3: Precision of methodsA andB
K? = 5 K? = 10 K? = 15 K? = 20

Method A B A B A B A B
m = 0.1 0.81±0.15 0.71±0.29 0.89±0.08 0.8±0.22 0.95±0.05 0.86±0.13 0.97±0.03 0.91±0.09
m = 0.5 0.8±0.16 0.73±0.29 0.89±0.08 0.8±0.21 0.95±0.05 0.86±0.13 0.97±0.03 0.92±0.09
m = 1.0 0.78±0.17 0.71±0.27 0.88±0.09 0.78±0.21 0.93±0.06 0.85±0.13 0.96±0.04 0.9±0.09
m = 1.5 0.73±0.19 0.66±0.28 0.84±0.1 0.79±0.2 0.93±0.06 0.84±0.13 0.95±0.04 0.9±0.1

Table 4: Recall of methodsA andB
K? = 5 K? = 10 K? = 15 K? = 20

Method A B A B A B A B
m = 0.1 0.99±0.02 0.99±0.02 1±0 1±0 0.99±0 0.99±0 0.99±0 1±0
m = 0.5 0.98±0.04 0.99±0.03 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 1±0
m = 1.0 0.95±0.08 0.94±0.08 0.96±0.06 0.96±0.05 0.97±0.03 0.97±0.04 0.97±0.03 0.98±0.02
m = 1.5 0.85±0.16 0.87±0.15 0.92±0.07 0.91±0.09 0.94±0.06 0.94±0.06 0.95±0.04 0.96±0.04

Table 5: False alarm rate of methodsA andB
K? = 5 K? = 10 K? = 15 K? = 20

Method A B A B A B A B
m = 0.1 0.13±0.03 0.23±0.2 0.24±0.03 0.33±0.19 0.34±0.02 0.42±0.13 0.44±0.02 0.51±0.12
m = 0.5 0.13±0.03 0.22±0.2 0.23±0.03 0.32±0.18 0.33±0.02 0.41±0.13 0.44±0.02 0.5±0.11
m = 1.0 0.13±0.03 0.21±0.18 0.23±0.03 0.32±0.18 0.33±0.02 0.4±0.13 0.43±0.03 0.5±0.12
m = 1.5 0.13±0.03 0.21±0.2 0.23±0.03 0.29±0.16 0.31±0.03 0.4±0.15 0.42±0.03 0.48±0.11

displayed in Figure 1. They consist in nuclear magnetic response measurements expected to carry
information about rock structure and especially its stratification.

One distinctive feature of these data is that they typically contain a non-negligible amount of outliers.
The multiple change-point estimation method should then, either be used after a data cleaning step
(median filtering [6]), or explicitly make heavy-tailed noise distribution assumption. We restricted
ourselves to a median filtering pre-processing. The results given by our method applied to the well-
log data processed with a median filter are displayed in Figure 1 forKmax = 200 and1 − ν = 0.99.
The vertical lines locate the change-points. We can note that they are close to those found out by [6]
(P. 206) who used Bayesian techniques to perform change-points detection.
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Figure 1: Left: Raw well-log data, Right: Change-points locations obtained with our method in
well-log data processed with a median filter
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6 Conclusion and prospects

We proposed here to cast the multiple change-point estimation as a variable selection problem. A
least-square criterion with a Lasso-penalty yields an efficient primary estimation of change-point
locations. Yet these change-point location estimates can be further refined thanks to a reduced
dynamic programming algorithm. We obtained competitive performances on both artificial and real
data, in terms of precision, recall and false alarm. Thus,Cachalot is a computationally efficient
multiple change-point estimation method, paving the way for processing large datasets.
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