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Abstract

We consider the problem of learning classifiers for structurally incomplete
data, where some objects have a subset of features inherently absent due to
complex relationships between the features. The common approach for han-
dling missing features is to begin with a preprocessing phase that completes
the missing features, and then use a standard classification procedure. In
this paper we show how incomplete data can be classified directly without
any completion of the missing features using a max-margin learning frame-
work. We formulate this task using a geometrically-inspired objective func-
tion, and discuss two optimization approaches: The linearly separable case
is written as a set of convex feasibility problems, and the non-separable case
has a non-convex objective that we optimize iteratively. By avoiding the
pre-processing phase in which the data is completed, these approaches offer
considerable computational savings. More importantly, we show that by el-
egantly handling complex patterns of missing values, our approach is both
competitive with other methods when the values are missing at random
and outperforms them when the missing values have non-trivial structure.
We demonstrate our results on two real-world problems: edge prediction in
metabolic pathways, and automobile detection in natural images.

1 Introduction

In the traditional formulation of supervised learning, data instances are viewed as vectors of
features in some high-dimensional space. However, in many real-world tasks, data instances
have a complex pattern of missing features. While features may sometimes be missing due
to measurement noise or corruption, different samples often have different sets of observable
features due to inherent properties of the instances. For example, in the case of recognizing
objects in natural images, an object is often classified using a set of image patches corre-
sponding to parts of the object (like the license plate for cars); but some images may not
contain all parts, either because a part was not captured in the image or because the specific
instance does not have this part in the first place.

In other scenarios, some features cannot even be defined for all instances. Such situations
arise when the objects to be learned are organized based on a known graph structure, since
their features may rely on local properties of the graph. For example, we might wish to
classify the attributes of a web-page given the attributes of neighboring web-pages [8]. In
analyzing genomic data, we may wish to predict the edges in networks of interacting proteins
or chemical reactions [9, 15]. In these cases, the local neighborhood of an instance in the
graph often varies drastically, and it has already been observed that variation this could
introduce statistical biases [8]. In the web-page task, for instance, a useful feature is the
most common topic of other sites that point to a given page. When a page has no such
parents, however, this feature is meaningless and should be considered structurally absent.

The common approach for classification with missing features is imputation, a two phase
procedure where the values of the missing attributes are first filled in during a preprocessing



phase, after which a standard classifier is applied to the completed data [10]. Most Impu-
tation techniques make most sense when the features are missing due to noise, especially
in the setting of missing at random (MAR, when the missingness pattern is conditionally
independent of the unobserved features given the observations), or missing completely at
random (MCAR, when it is independent of both observed and unobserved measurements).

In common practice of applying imputation, missing attributes in continuous data are often
filled with zeros, or with the average of all of the data instances, or using the k nearest
neighbors (kNN) of each instance to find a plausible value of its missing features. A second
family of imputation methods builds probabilistic generative models of the features using
raw maximum likelihood or algorithms such as expectation maximization (EM) [4]. Such
model-based methods allow the designer to introduce prior knowledge and are extremely
useful when priors can be explicitly modeled. These methods work very well for MAR data
settings, because they assume that the missing features are generated by the same model that
generates the observed features. However, model-based approaches can be computationally
expensive, and require significant prior knowledge about the data. More importantly, they
will produce meaningless completions for features that are structurally absent. As an extreme
example, consider two subpopulation of instances (e.g., animals and buildings) having no
overlapping features (e.g., body parts, and architectural aspects), in which filling missing
values (e.g., the body parts of buildings) is clearly meaningless and may harm classification
performance. As a result, for structurally absent features, it would be useful if we could avoid
unnecessary prediction of hypothetical undefined values, and classify instances directly.

We approach this problem directly from the geometric interpretation of the classification
task as finding a separating hyperplane in the feature space. We view instances with dif-
ferent feature sets as lying in subspaces of the full feature space, and suggest a modified
optimization objective within the framework of support vector machines (SVMs), that ex-
plicitly considers the subspace of each instance. We show how the linearly separable case
can be efficiently solved using convex optimization (second order cone programming, SOCP).
The objective of the non separable case is non-convex, and we propose an iterative proce-
dure that is found to converge in practice. These approaches may be viewed as model-free
methods for handling missing data in the cases where the MAR assumption fails to hold.

We evaluate the performance of our approach in two real world applications: prediction of
missing enzymes in a metabolic network, and automobile detection in natural images. In
both tasks, features may be inherently absent due to the mechanisms described above, and
our methods are found superior to other simple imputation methods.

2 Max-Margin Formulation for Missing Features

Let x1 . . .xn be a set of samples with binary labels yi ∈ {−1, 1}. Each sample xi is char-
acterized by a subset of features F(xi), from a full set F of size d. A sample that has all

features F(xi) = F , is viewed as a vector in R
d, where the ith coordinate corresponds to

the ith feature. A sample xi with partially valid features can be viewed as embedded in the

relevant subspace R
|F(xi)| ⊆ R

d. For simplicity of notation, we treat each xi as if it were a
vector in R

d where only its F(xi) entries are valid and define the inner product with another

vector in R
d as wx =

∑

k:fk∈F(xi)
wkxk. Importantly, since instances share features, the

learned classifier must be consistent across instances, assigning the same weight to a given
feature in different samples, even if those instance do not lie in the same subspace.

In the classical SVM approach [14, 13], a linear classifier w is optimized to maximize the mar-
gin, defined as mini yi(wxi + b)/‖w‖, and the learning problem is reduced to the quadratic
constrained optimization problem

min
w,ξ,b

1

2
‖w‖2 + C

n
∑

i=1

ξi s.t. yi(wxi + b) ≥ 1 − ξi , i = 1 . . . n (1)

where b is a threshold, the ξ’s are slack variables necessary for the case when the training
instances are not linearly separable, and C is the error penalty. Eq. (1) can be extended to
nonlinear classifiers using kernels [13].
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Figure 1: The margin is incorrectly scaled when a sample
that has missing features is treated as if the missing features
have a value of zero. In this example, the margin of a sample
that only has one feature (the x dimension) is measured
both in the higher dimensional space (ρ2) and the lower one
(ρ1). If all features are assumed to exist, and we give the
missing feature (along the y axis) a value of zero, the margin
ρ2 measured in the higher dimensional space is shorter that
the margin measured in the relevant subspace ρ1 .

Consider now learning such a classifier in the presence of missing data. At first glance, it may
appear that since the x’s only affect the optimization through inner products with w, missing
features can merely be skipped (or equivalently, replaced with zeros), thereby preserving the
values of the inner product. However, this does not properly normalize the different entries
in w, and damages classification accuracy. The reason is illustrated in Fig. 1 where a single
sample in R

2 has one valid and one missing feature. Due to the missing feature, measuring
the margin in the full space ρ2, underestimates the correct geometric margin of the sample
in the valid space ρ1. This is different from the case where the feature exists but is unknown,
in which the sample’s margin could be either over- or under-estimated. In the next sections,
we explore how this Eq. (1) can be solved while properly taking this normalization into
account. We start by reminding the reader about the geometric interpretation of SVM.

3 Geometric interpretation

The derivation of the SVM classifier [14] is motivated by the goal of finding a hyperplane that
maximally separates the positive examples from the negative, as measured by the geometric
margin ρ(w) = mini

yiwxi

‖w‖ . The task of maximizing the margin ρ(w),

max
w

ρ(w) = max
w

(

min
i

yiwxi

‖w‖

)

(2)

is transformed into the quadratic programming problem of Eq. (1) in two steps. First, ‖w‖,
is taken out of the minimization, yielding maxw

1
‖w‖ (mini yiwxi). Then, the following

invariance is used: for every solution, there exists a solution that achieves the same target
function value, but with a margin that equals 1. This allows us to write the SVM problem
as a constrained optimization problem: maxw ‖w‖

−1
s.t. yi(wxi) ≥ 1. This is equivalent

to minimizing ‖w‖2 with the same constraints, which equals the SVM problem of Eq. (1).

In the case of missing features, this derivation no longer optimizes the correct geometrical
margin (Fig. 1). To address this problem, we treat the margin of each instance in its own

subspace, by defining the instance margin for the ith instance as ρi(w) = yiw
(i)

xi

‖w(i)‖
where

‖w(i)‖ =
√

∑

k:fk∈F(xi)
w2

k. The geometric margin is, as before, the minimum over all

instance margins, yielding a new optimization problem

max
w

(

min
i

yiw
(i)xi

‖w(i)‖

)

. (3)

Unfortunately, since different margin terms are normalized by different norms ‖w(i)‖, we
can no longer take the denominator out of the minimization as above. In addition, each
of the terms yiw

(i)xi/‖w
(i)‖ is non-convex in w, which is difficult to solve directly in an

efficient way. We now discuss two approaches for solving this problem.

In the linearly separable case, the optimization problem of Eq. (3) is equivalent to

max
w,γ

γ s.t. yiw
(i)xi ≥ γ‖w(i)‖ i = 1 . . . n , (4)



This is a convex feasibility problem for any fixed value of γ, which is a real scalar that
corresponds to the margin. It can be solved efficiently using a bisection search over γ ∈ R

+,
where in each iteration we solve a convex second order cone program (SOCP) [11]. Unfor-
tunately, extending this formulation to the non-separable while preserving the geometric
margin interpretation case makes the problem non-convex (this is discussed elsewhere).

A second approach for solving Eq. (3) is to treat each instance margin individually. We
represent each of the norms ‖w(i)‖ as a scaling of the full norm by defining scaling coefficients
si = ‖w(i)‖/‖w‖, and rewriting Eq. (3) as

max
w

(

min
i

yiwxi

si‖w‖

)

= max
w

1

‖w‖

(

min
i

yiwxi

si

)

, si =
‖w(i)‖

‖w‖
. (5)

The si factors are scalars, and had we known them, we could have solved a standard SVM
problem. Unfortunately they depend on w(i) and are unknown. This formalism allows us to
use again the invariance to the rescaling of ‖w‖ and rewrite as a constrained optimization
problem over si and w. In the non-separable case, Eq. (5) becomes

min
w,b,ξ,s

1

2
‖w‖2 + C

∑

i

ξi s.t.
1

si

(yi(wxi + b)) ≥ 1 − ξi , i = 1 . . . n (6)

si = ‖w(i)‖/‖w‖ , i = 1 . . . n

This constrained optimization problem is no longer a QP. In fact, due to the normalization
constraint it is not even convex in w. One solution is a projected gradient approach, in which
one iterates between steps in the direction of the gradient of the Lagrangian and projections
to the constrained space, by calculating si = ‖w(i)‖/‖w‖. For the right choices of step sizes,
such approaches are guaranteed to converge to local minima [2].

We can use a faster iterative algorithm based on the fact that the problem is a QP for any
given set of si’s, and iterate between (1) solve a QP for w given si, and (2) use the resulting
w to calculate new si’s. This algorithm differs from a projected gradient approach in that
rather than taking a series of small gradient steps, it takes bigger leaps, and projects back to
the constrained space after each step. Since the convergence of this iterative algorithm is not
guaranteed, we used cross validation to choose an early stopping point and found that the
best solutions were obtained within 2-5 steps. Typically, the objective improved on the first
1-3 iterations, but then, in about 75% of the cases the objective oscillated. In the remaining
cases the algorithm converged to a fixed point. It is easy to see that a fixed point of this
iterative procedure achieves an optimal solution for Eq. (6), since it achieves a minimal ‖w‖
while obeying the si constraints. As a result, when this algorithm converges, the solution is
also guaranteed to be a locally optimal solution of the original problem Eq. (3).

The power of the SVM approach can be largely attributed to the flexibility and efficiency
of nonlinear classification allowed through the use of kernels. The dual of the above QP can
be kernelized as in a standard SVM, yielding

max
α∈R

n

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi

yi

si

K (xi,xj)
yj

sj

αj s.t. 0 ≤ αi ≤ C ;

n
∑

i=1

αiyi = 0. (7)

where K(xi,xj) is the kernel function that simulates an inner product in the higher dimen-
sional feature space. Classification of new samples are obtained as in standard SVM by
calculating the margin ρ(xnew) =

∑

j yjαj
1
sj

K(xj , xnew) 1
snew

.

Kernels in this formulation operate over vectors with missing features, hence we have to
develop kernels that handle them correctly. Fortunately, many kernels only depend on their
inputs through their inner product. In this case there is an easy procedure to construct a
modified kernel that takes such missing values into account. For example, for a polynomial

kernel K(xi,xj) = (〈xi,xj〉 + 1)
d
, define K ′(xi,xj) = K(xi,xj) = (〈xi,xj〉F + 1)

d
, with

the inner product calculated over valid features 〈xi,xj〉F =
∑

k:fk∈χ(xj)∩F(xi)
〈xik,xjk〉.

This can be easily proved to be a kernel.
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Figure 2: Car classification results. (a) An easy instance where all local features are approximately
in agreement. (b) A hard instance where local features are divided into two distinct groups. This
instance was correctly classified by the ‘geometric margin’ approach but misclassified by all other
methods. (c) Classification accuracy of the different methods for the task of object recognition in
real images. Error bars are standard errors of the mean (SEM) over the five cross validation sets.

4 Experiments

We evaluated our approaches in three different missingness scenarios. First, as a sanity
check, we explored performance when features are missing at random, in a series of five
standard UCI benchmarks, and also in a large digit recognition task using MNIST data. In
this setting our methods performed equally well as other approaches (or slightly better). The
full details of these experiments are provided in a longer version of this work. Second, we
study a visual object recognition application where some features are missing because they
cannot be located in the image. Finally, we apply our methods to a problem of biological
network completion, where missingness patterns of features is determined by the known
structure of the network.

For all applications, we compare our iterative algorithm with five common approaches for
completing missing features. 1. Zero: Missing values were set to zero. 2. Mean: Missing
values were set to the average feature values 3. Aggregated Flags: Features were anno-
tated with an explicit additional feature noting whether a feature is valid or missing. To
reduce the number of added features, we added a single flag for each group of features that
were valid or invalid together across all instances. For example, In the vision application, all
features of a landmark candidate are grouped together since they are all invalid if the match
is wrong (see below). 4. kNN: Missing features were set with the mean value obtained
from the K nearest neighbors instances; neighborhood was measured using a Euclidean
distance in the subspace relevant to each two samples, number of neighbors was varied as
K = 3, 5, 10, 20, and the best result is the one reported. 5. EM: Generative model in
the spirit of [4]. A Gaussian mixture model is learned by iterating between (1) learning a
GMM model of the filled data (2) re-filling missing values using clusters means, weighted
by the posterior probability that a cluster generated the sample. Covariances were assumed
spherical. The number of clusters was varied as K = 3, 5, 10, 15, 20, and the best result is
the one reported. 6. Geometric margin: Our non-separable approach described in Sec. 3.

In all of the experiments, we used a 5-fold cross validation procedure and evaluated perfor-
mance using a testing set that was not used during training. In addition, 20% of the training
set was used for choosing optimization parameters, such as the kernel type, its parameters,
and an early stopping point for the iterative algorithm.

4.1 Visual object recognition

We now consider a visual object recognition task where instances have structurally missing
features. In this task we attempt to determine if an object from a certain class (automobiles)
is present in a given input image. The task of classifying images based on the object class
that they contain has seen much work in recent years [1, 5],and discriminative approaches
have typically produced very good results [5, 12].

Features in these methods are commonly constructed from regions of interest (patches) in
the image. These patches typically cover “landmarks” of the object, like the trunk or a
headlight for a car. A typical set of patches includes several candidates for any object part,



and some images may have more candidates for a given part than others. For example, a
trunk of a car may not be found in a picture of a hatch-back car, hence all its corresponding
features are considered to be structurally missing from that image. Our object model
contains a set of “landmarks”, for which we find several matches in a given image (details
are omitted due to lack of space). Fig. 2 shows examples of matches for the front windshield
landmark. Because of the noisy matches, the highest scoring match often does not match
the true landmark, and the number of high-quality matches (features) varies in practice. It
is in precisely such a scenario that we expect our proposed algorithm to be effective.

In some cases, landmark models could provide confidence levels for each match. These
could in principle be used as additional features to help the classifiers give more weight to
better matches, and are expected to improve classification when the confidence measure is
reliable. While this is a potentially useful approach for the current application, this paper
takes a different approach: it does not use any soft confidence values but rather treats the
low-confidence matches as wrong, removing them from the data.

Concretely, we located up to 10 candidate patches (21 × 21 pixels) that were promising
(likelihood above a given threshold) for each of the 19 landmarks in the car model. For
each candidate, we compute the first 10 principal component coefficients of the image patch
and concatenate these patches to form the image feature vector. If the number of patches
for a given landmark is less than ten, we consider the rest to be structurally absent. We
evaluated performance for this task using two levels of a 5-fold cross validation procedure
as explained above. We compared several kernels and report results using the kernel that
fared best on the validation set, which was usually a second order polynomial kernel.

Fig. 2c compares the accuracy of the different methods. We found the geometric approach
to be significantly superior to all other methods. To further evaluate our method, we qual-
itatively examined the classification results for several images across the various methods.
Fig. 2a shows the top 10 matches for the front windshield landmark for a representative
“easy” test instance where all local features are approximately in agreement. This instance
was correctly classified by all methods. In contrast, Fig. 2b shows a representative “hard”
test instance where local features cluster into two different groups. In this case, the cluster
of bad matches was automatically excluded yielding missing features, and our geometric
approach was the only method able to classify the instance correctly.

4.2 Metabolic pathway reconstruction

As a final application, we consider the problem of predicting missing enzymes in metabolic
pathways, a long-standing and important challenge in computational biology [15, 9]. In-
stances in this task have missing features due to the structure of the biochemical network.
Cells use a complex network of chemical reactions to produce their chemical building blocks
(Fig. 3). Each reaction transforms a set of molecular compounds (called substrates) into
another set of molecules (products), and requires the presence of an enzyme to catalyze the
reaction. It is often unknown which enzyme catalyzes a given reaction, and it is desirable
to predict the identity of such missing enzymes computationally.

Our approach for predicting missing enzymes is based on the observation that enzymes in
local network neighborhoods usually participate in related functions. As a result, neighbor-
ing enzyme pairs have non trivial correlations over their features that reflect their functional
relations. Importantly, different types of neighborhood relations between enzyme pairs lead
to different relations of their properties. For example, an enzyme in a linear chain depends
on the preceding enzyme product as its substrate. Hence it is expected that the correspond-
ing genes are co-expressed [9, 15]. On the other hand, enzymes in forking motifs (same
substrate, different products) often have anti-correlated expression profiles [7].

To preserve the distinction between different neighbor relations, we defined a set of network
motifs, including forks, funnels and linear chains. Each enzyme is represented as a vector
of features that measure its relatedness to each of its neighbors. A feature vector has
structurally missing entries if the enzyme does not have all types of neighbors. For example,
the enzyme PHA2 in Fig. 3 does not have a neighbor of type fork, and therefore all features
assigned to such a neighbor are absent in the representation of the reaction “Prephanate →
Phenylpyruvate”.
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Figure 3: Left: A fragment of the full metabolic pathway network in S. cerevisiae. Chemical
reactions (arrows) transform a set of molecular compounds into other compounds. Small molecules
like CO2 were omitted from this drawing for clarity. Reactions are catalyzed by enzymes (boxed
names, e.g., ARO7), but in some cases these enzymes are unknown. The network imposes various
neighborhood relations between enzymes assigned to reactions, like linear chains (ARO7,PHA2),
forks (TRP2,ARO7) and funnels (ARO9,PHA2) Top Right: Classification accuracy for compared
methods. The classification task is to identify if a candidate enzyme is in the right “neighborhood”.
Error bars are SEMs over 5 cross validation sets. Bottom right: ROC curves for the same task.

We used the metabolic network of S. cerevisiae, as reconstructed by Palsson and colleagues
[3], after removing 14 metabolic currencies and reactions with unknown enzymes, leaving
1265 directed reactions. We used three data types: (1) A compendium of 645 gene expression
experiments; each experimental condition k contributed one feature, the point-wise Pearson

correlation
xi(k)xj(k)
‖xi‖‖xj‖

. xi is the vector of expression levels across conditions. (2) The protein-

domain content of each enzyme as found by the Prosite database. Each domain k contributed
one feature, the point-wise symmetric DKL measure xi(k) (log(xi(k)/(xj(k) + xi(k))/2)) +
xj(k) (log(xj(k)/(xj(k) + xi(k))/2)). (3) The cellular localization of the protein [6]; each
cellular localization contributed one feature, the point-wise Hamming distance. In total,
the feature vector length was about 3900. Pathway reconstruction requires that we rank
candidate enzymes by their potential to match a reaction. As a first step towards this goal,
we train a binary classifier, to predict if an enzyme fits its neighborhood. We created a
set of positive examples from the reactions with known enzymes (∼ 520 reactions), and
also created negative examples by plugging impostor genes into ‘wrong’ neighborhoods. We
trained an SVM classifier using a 5-fold cross validation procedure as described above.

Figure 3 shows the classification error of the different methods in the gene filling task.
The geometric margin approach achieves significantly better performance in this task. kNN
achieved very poor performance compared to all other methods. One reason could be
that the Euclidean distance is inappropriate for the current task and that a more elaborate
distance measure needs to developed for this type of data. Learning metrics is a complicated
task in general, and more so in the current problem since the feature vectors contain entries
of several different types, making it unlikely that a naive distance measure would work well.

Finally, the resulting classifier is used for predicting missing enzymes, by ranking all can-
didate enzymes according to their match to a given neighborhood. Evaluating the quality
of ranking on known enzymes (cross validation), shows that it significantly outperforms
previous approaches [9] (not shown here due to space limitations). We attribute this to the
ability of the current approach to preserve different types of network-neighbors as separate
features in spite of creating missing values.



5 Discussion

We presented a novel method for max-margin training of classifiers in the presence of missing
features, where the pattern of missing features is an inherent part of the domain. Instead of
completing missing features as a preprocessing phase, we developed a max-margin learning
objective based on a geometric interpretation of the margin when different instances essen-
tially lie in different spaces. Using two challenging real life problems we showed that our
method is significantly superior when the pattern of missing features has structure.

The standard treatment of missing features is based on the concept that missing features
exist but are unobserved. This assumption underlies the approach of completing features
before the data is used in classification. This paper focuses on a different scenario, in which
features are inherently absent. In such cases, it is not clear why we should guess hypothetical
values for undefined features, since the completed values are filled based on other observed
values, and do not add information to our classifiers. In fact, by completing features that
are not supposed to be part of an instance, we may be confusing the learning algorithm by
presenting it with problem which may be harder than the one we actually need to solve.

Interestingly, the problem of classifying with missing features is related to another problem,
where individual reliability measures are available for features at each instance separately.
This is a common case in analysis scientific measurements, where the reliability of each
experiment could be provided separately. For example, DNA micro-array experiments have
inherent measures of experimental noise levels, and biological variability is often estimated
using replicates. This problem can be viewed in the same framework described in this
paper: the geometric margin must be defined separately for each instance since the different
noise levels distort the relative scale of each coordinate of each instance separately. Relative
to this setting, the completely missing and fully valid features discussed in this paper are
extreme points on the spectrum of reliability. It will be interesting to see which aspects of
the geometric formulation discussed in this paper can be extended to this new problem.
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