
Multi-dynamic Bayesian Networks

Karim Filali and Jeff A. Bilmes
Departments of Computer Science & Engineering and Electrical Engineering

University of Washington
Seattle, WA 98195

{karim@cs,bilmes@ee}.washington.edu

Abstract

We present a generalization of dynamic Bayesian networks to concisely describe
complex probability distributions such as in problems with multiple interacting
variable-length streams of random variables. Our framework incorporates recent
graphical model constructs to account for existence uncertainty, value-specific
independence, aggregation relationships, and local and global constraints, while
still retaining a Bayesian network interpretation and efficient inference and learn-
ing techniques. We introduce one such general technique, which is an extension
of Value Elimination, a backtracking search inference algorithm.Multi-dynamic
Bayesian networksare motivated by our work on Statistical Machine Transla-
tion (MT). We present results on MT word alignment in support of our claim that
MDBNs are a promising framework for the rapid prototyping of new MT systems.

1 INTRODUCTION

The description of factorization properties of families of probabilities using graphs (i.e., graphical
models, or GMs), has proven very useful in modeling a wide variety of statistical and machine
learning domains such as expert systems, medical diagnosis, decision making, speech recognition,
and natural language processing. There are many different types of graphical model, each with its
own properties and benefits, including Bayesian networks, undirected Markov random fields, and
factor graphs. Moreover, for different types of scientific modeling, different types of graphs are
more or less appropriate. For example, static Bayesian networks are quite useful when the size of
set of random variables in the domain does not grow or shrink for all data instances and queries of
interest.

Hidden Markov models (HMMs), on the other hand, are such that the number of underlying random
variables changes depending on the desired length (which can be a random variable), and HMMs
are applicable even without knowing this length as they can be extended indefinitely using online
inference. HMMs have been generalized to dynamic Bayesian networks (DBNs) and temporal con-
ditional random fields (CRFs), where an underlying set of variables gets repeated as needed to fill
any finite but unbounded length. Probabilistic relational models (PRMs) [5] allow for a more com-
plex template that can be expanded in multiple dimensions simultaneously. An attribute common
to all of the above cases is that the specification of rules for expanding any particular instance of a
model is finite. In other words, these forms of GM allow the specification of models with an unlim-
ited number of random variables (RVs) using a finite description. This is achieved using parameter
tying, so while the number of RVs increases without bound, the number of parameters does not.

In this paper, we introduce a new class of model we call multi-dynamic Bayesian networks. MDBNs
are motivated by our research into the application of graphical models to the domain of statistical
machine translation (MT) and they have two key attributes from the graphical modeling perspective.
First, an MDBN generalizes a DBN in that there are multiple “streams” of variables that can get
unrolled, but where each stream may be unrolled by a differing amount. In the most general case,
connecting these different streams together would require the specification of conditional probabil-

ity tables with a varying and potentially unlimited number ofparents. To avoid this problem and
retain the template’s finite description length, we utilize a switching parent functionality (also called
value-specific independence). Second, in order to capture the notion of fertility in MT-systems
(defined later in the text), we employ a form of existence uncertainty [7] (that we callswitching
existence), whereby the existence of a given random variable might depend on the value of other
random variables in the network.

Being fully propositional, MDBNs lie between DBNs and PRMs in terms of expressiveness. While
PRMs are capable of describing any MDBN, there are, in general, advantages to restricting ourselves
to a more specific class of model. For example, in the DBN case, it is possible to provide a bound on
inference costs just by looking at attributes of the DBN template only (e.g., the left or right interfaces
[12, 2]). Restricting the model can also make it simpler to use in practice. MDBNs are still relatively
simple, while at the same time making possible the easy expression of MT systems, and opening
doors to novel forms of probabilistic inference as we show below.

In section 2, we introduce MDBNs, and describe their application to machine translation showing
how it is possible to represent even complex MT systems. In section 3, we describe MDBN learning
and decoding algorithms. In section 4, we present experimental results in the area of statistical
machine translation, and future work is discussed in section 5.

2 MDBNs
A standard DBN [4] template consists of a directed acyclic graphG = (V,E) = (V1 ∪ V2, E1 ∪
E2 ∪ E→

2) with node setV and edge setE. For t ∈ {1, 2}, the setsVt are the nodes at slicet, Et

are the intra-slice edges between nodes inVt, andE→
t are the inter-slice edges between nodes inV1

andV2. To unroll a DBN to lengthT , the nodesV2 along with the edges adjacent to any node inV2

are clonedT − 1 times (where parameters of cloned variables are constrained to be the same as the
template) and re-connected at the corresponding places.

An MDBN with K streams consists of the union ofK DBN templates along with a template struc-
ture specifying rules to connect the various streams together. An MDBN template is a directed
graph

G = (V,E) = (
⋃

k

V (k),
⋃

k

E(k) ∪ E
(k)
ll)

where(V (k), E(k)) is thekth DBN, and the edgesE(k)
ll are rules specifying how to connect stream

k to the other streams. These rules are general in that they specify the set of edges for all values of
Tk. There can be arbitrary nesting of the streams such as, for example, it is possible to specify a
model that can grow along several dimensions simultaneously.

An MDBN also utilizes “switching existence”, meaning some subset of the variables inV bestow
existence onto other variables in the network. We call these variablesexistence bestowing(or eb-
nodes). The idea of bestowing existence is well defined over a discrete space, and is not dissimilar
to a variable length DBN. For example, we may have a joint distribution over lengths as follows:

p(X1, . . . , XN , N) = p(X1, . . . , Xn|N = n)p(N = n)

where hereN is an eb-node that determines the number of other random variables in the DGM.

Our notion of eb-nodes allows us to model certain characteristics found within machine translation
systems, such as “fertility” [3], where a given English word is cloned a random number of times
in the generative process that explains a translation from French into English. This random cloning
might happen simultaneously at all points along a given MDBN stream. This means that even for a
given fixed stream lengthTi = ti, each stream could have a randomly varying number of random
variables. Our graphical notation for eb-nodes consists of the eb-node as a square box containing
variables whose existence is determined by the eb-node.

We start by providing a simple example of an expanded MDBN for three well known MT systems,
namely the IBM models 1 and 2 [3], and the “HMM” model [15].1 We adopt the convention in [3]
that our goal is to translate from a string of French wordsF = f of lengthM = m into a string
of English wordsE = e of lengthL = l — of course these can be any two languages. The basic
generative (noisy channel) approach when translating from French to English is to represent the joint

1We will refer to it as M-HMM to avoid confusion with regular HMMs.

distributionP (f , e) = P (f |e)P (e). P (e) is a language model specifying the prior over the word
string e. The key goal is to produce a finite-description length representation forP (f |e) wheref
ande are of arbitrary length. A hidden alignment string,a, specifies how the English words align to
the French word, leading toP (f |e) =

∑
a P (f ,a|e).

Figure 1(a) is a 2-stream MDBN expanded representation of the three models, in this caseℓ = 4
andm = 3. As shown, it appears that the fan-in to nodefi will be ℓ and thus will grow without
bound. However, a switching mechanism wherebyP (fi|e, ai) = P (fi|eai

) limits the number of
parameters regardless ofL. This means that the alignment variableai indicates the English word
eai

that should be aligned to French wordfi. The variablee0 is anull word that connects to French
words not explained by any ofe1, . . . , eℓ. The graph expresses all three models — the difference is
that, in Models 1 and 2, there are no edges betweenaj andaj+1. In Model 1,p(aj = ℓ) is uniform
on the set{1, . . . , L}; in Model 2, the distribution overaj is a function only of its positionj, and on
the English and French lengthsℓ andm respectively. In the M-HMM model, theai variables form
a first order Markov chain.

e0 e1 e2

f1 f3f2

a1 a2

e3 e4

a3

l

m

(a) Models 1,2 and M-HMM

m

f1

a1

φ0 φ1 φ2 φ3

e1 e2 e3

f2

a2

f3

a3

f4

a4

f5

a5

f6

a6

m’

τ01 τ02 τ11 τ12 τ13 τ21

π01 π02 π11 π12 π13 π21

u v

x

y

w

ℓ

(b) Expanded M3 graph

Figure 1:Expanded 2-stream MDBN description of IBM Models 1 and 2, and the M-HMM model for
MT; and the expanded MDBN description of IBM Model 3 with fertility assignmentφ0 = 2, φ1 =
3, φ2 = 1, φ3 = 0.

From the above, we see that it would be difficult to express this model graphically using a standard
DBN sinceL andM are unequal random variables. Indeed, there are two DBNs in operation, one
consisting of the English string, and the other consisting of the French string and its alignment.
Moreover, the fully connected structure of the graph in the figure can represent the appropriate
family of model, but it also represents models whose parameter space grows without bound — the
switching function allows the model template to stay finite regardless ofL andM .

With our MDBN descriptive abilities complete, it is now possible to describe the more complex IBM
models 3, and 4[3] (an MDBN for Model3 is depicted in fig. 1(b)). The top most random variable,ℓ,
is a hidden switching existence variable corresponding to the length of the English string. The box
abuttingℓ includes all the nodes whose existence depends on the value ofℓ. In the figure,ℓ = 3,
thus resulting in three English wordse1, e2, ande3 connected using a second-order Markov chain.
To each English wordei corresponds a conditionally dependent fertility eb-nodeφi, which indicates
how many timesei is used by words in the French string. Eachφi in turn controls the existence of a
set of variables under it. Given the fertilities (the figure depicts the caseφ1 = 3, φ2 = 1, φ3 = 0), for
each wordei, φi French word variables are granted existence and are denoted byτi1, τi2, . . . , τiφi

,
what is called thetablet [3] of ei. The values taken by theτ variables need to match the actual
observed French sequencef1, . . . , fm. This is represented as a shared constraint between all the
f , π, andτ variables which have incoming edges into the observed variablev. v’s conditional
probability table is such that it is one only when the associated constraint is satisfied2. The variable

2This type of encoding of constraints corresponds to the standard mechanism used by Pearl [14]. A naive
implementation, however, would enumerate a number of configurations exponential in the number of con-
strained variables, while typically only a small fraction of the configurations would have positive probability.

πi,k ∈ {1, . . . ,m} is a switching dependency parent with respect to the constraint variablev and
determines whichfj participates in an equality constraint withτi,k.

The bottom variablem is a switching existence node (observed to be 6 in the figure) with corre-
sponding French word sequence and alignment variables. The French sequence participates in thev
constraint described above, while the alignment variablesaj ∈ {1, . . . , ℓ}, j ∈ 1, . . . ,m constrain
the fertilities to take their unique allowable values (for the given alignment). Alignments also restrict
the domain of permutation variables,π, using the constraint variablex. Finally, the domain size of
eachaj has to lie in the interval[0, ℓ] and that is enforced by the variableu. The dashed edges
connecting the alignmenta variables represent an extension to implement an M3/M-HMM hybrid.

Thenull submodelinvolving the deterministic nodem′(=
∑ℓ

i=1 φi) and eb-nodeφ0 accounts for
French words that are not explained by any of the English wordse1, . . . , eℓ. In this submodel,
successive permutation variables are ordered and this constraint is implemented using the observed
child w of π0i andπ0(i+1).

Model 4 [3] is similar to Model 3 except that the former is based on a more elaborate distortion
model that uses relative instead of absolute positions both within and between tablets.

3 Inference, Parameter Estimation and MPE

Multi-dynamic Bayesian Networks are amenable to any type of inference that is applicable to regular
Bayesian networks as long as switching existence relationships are respected and all the constraints
(aggregation for example) are satisfied. Unfortunately DBN inference procedures that take advan-
tage of the repeatable template and can preprocess it offline, are not easy to apply to MDBNs. A
case in point is the Junction Tree algorithm [11]. Triangulation algorithms exist that create an offline
triangulated version of the input graph and do not re-triangulate it for each different instance of the
input data [12, 2]. In MDBNs, due to the flexibility to unroll templates in several dimensions and to
specify dependencies and constraints spanning the entire unrolled graph, it is not obvious how we
can exploit any repetitive patterns in a Junction Tree-style offline triangulation of the graph template.

In section 4, we discuss sampling inference methods we have used. Here we discuss our extension to
a backtracking search algorithm with the same performance guarantees as the JT algorithm, but with
the advantage of easily handling determinism, existence uncertainty, and constraints, both learned
and explicitly stated.

Value Elimination (VE) ([1]), is a backtracking Bayesian network inference technique that caches
factors associated with portions of the search tree and uses them to avoid iterating again over the
same subtrees. We follow the notation introduced in [1] and refer the reader to that paper for details
about VE inference. We have extended the VE inference approach to handle explicitly encoded
constraints, existence uncertainty, and to performapproximate local domain pruning(see section 4).
We omit these details as well as others in the original paper and briefly describe the main data
structure required by VE and sketch the algorithm we refer to asFirstPass (fig. 1) since it constitutes
the first step of the learning procedure, our main contribution in this section.

A VE factor, F , is such that we can write the following marginal of the joint distribution
∑

X=x

P (X = x,Y = y,Z) = F.val × f(Z)

such that(X∪Y)∩Z = ∅, F.val is a constant, andf(Z) a function ofZ only. Y is a set of variables
previously instantiated in the current branch of search tree to the value vectory. The pair(Y,y) is
referred to as adependency set (F.Dset). X is referred to as asubsumed set (F.Sset). By caching
the tuple(F.Dset, F.Sset, F.val), we avoid recomputing the marginal again whenever (1)F.Dset
is active, meaning all nodes stored inF.Dset are assigned their cached values in the current branch
of the search tree; and (2) none of the variables inF.Sset are assigned yet.

FirstPass (alg. 1) visits nodes in the graph in Depth First fashion. In line 7, we get the values of
all Newly Single-valued (NSV) CPTs i.e., CPTs that involve the current node,V , and in which all

We use a general directed domain pruning constraint. Deterministic relationships then become a special case
of our constraint whereby the domain of the child variable is constrained to a single value with probability one.

C

A

BB

D

C

D

c(A=0)=(1/P(e))*(F7.tau*P(A=0)*F5.val)=(1/P(e))(P(A=0)*P(E=e|A=0))=P(A=0|E=e)

c(C=0,B=0)=(1/P(e))*F3.tau*P(C=0|B=0)*F1.val
=(1/P(e) * (P(A=0,B=0)+P(A=1,B=0)) * P(C=0|B=0) * F1.val
=(1/P(e)) * P(B=0) * P(C=0|B=0) * F1.val
=(1/P(e)) * P(B=0) * P(C=0|B=0) * F1.val
=(1/P(e)) * P(C=0,B=0) * F1.val
=P(C=0,B=0,E=e)/P(e)=P(C=0,B=0|E=e)

F5.val=P(B=0|A=0)*F3.val+P(B=1|A=0)*F4.val

F3.val=P(C=0|B=0)*F1.val+P(C=1|B=0)*F2.val

F4.val=P(C=0|B=1)*F1.val+P(C=1|B=1)*F2.val

F5.tau = F7.tau * P(A=0) F6.tau = F7.tau * P(A=1)

F7.tau = 1.0 = P(Evidence)/F7.val

F3.tau = F5.tau * P(B=0|A=0) + F6.tau * P(B=0|A=1) = P(B=0)

F1.tau = F3.tau * P(C=0|B=0) + F4.tau * P(C=0|B=1) = P(C=0)
F2.tau = F3.tau * P(C=1|B=0) + F4.tau * P(C=1|B=1) = P(C=1)

F4.tau = F5.tau * P(B=1|A=0) + F6.tau * P(B=1|A=1) = P(B=1)

*F2*F1

F2F1

F3: Dset={B=0} Sset={C,D} F4

*F3 *F4

F5: Dset={A=0} Sset={B,C,D}

F7: Dset={} Sset={A,B,C,D} val=P(E=e)

F6

Factor values needed for c(A=0) and c(C=0,B=0) computation:

F1.val=P(D=0|C=0)P(E=e|D=0)+P(D=1|C=0)P(E=e|D=1)
F2.val=P(D=0|C=1)P(E=e|D=0)+P(D=1|C=1)P(E=e|D=1)

Tau values propagated recursively

F
ir

st
 p

as
s

S
eco

n
d

 p
ass

Variable traversal order: A, B, C, and D.
Factors are numbered by order of creation.
*Fi denotes the activation of factor i.

0 1

Figure 2: Learning example using the Markov chainA → B → C → D → E, whereE is observed.
In the first pass, factors (Dset, Sset and val) are learned in a bottom up fashion. Also, the normalization
constantP (E = e) (probability of evidence) is obtained. In the second pass, tau values are updated in a
top-down fashion and used to calculate expected countsc(F.head, pa(F.head)) corresponding to each F.head
(the figure shows the derivations for (A=0) and (C=0,B=0), but all counts are updated in the same pass).

other variables are already assigned (these variables and their values are accumulated into Dset). We
also check for factors that are active, multiply their values in, and accumulate subsumed vars in Sset
(to avoid branching on them). In line 10, we addV to the Sset. In line 11, we cache a new factorF
with valueF.val = sum. We storeV into F.head, a pointer to the last variable to be inserted into
F.Sset, and needed for parameter estimation described below.F.Dset consists of all the variables,
exceptV , that appeared in any NSV CPT or the Dset of an activated factor at line 6.

Regular Value Elimination is query-based, similar to variable elimination and recursive
conditioning—what this means is that to answer a query of the typeP (Q|E = e), whereQ is
query variable andE a set of evidence nodes, we forceQ to be at the top of the search tree, run the
backtracking algorithm and then read the answers to the queriesP (Q = q|E = e), q ∈ Dom[Q],
along each of the outgoing edges ofQ. Parameter estimation would require running a number of
queries on the order of the number of parameters to estimate.

We extend VE into an algorithm that allows us to obtain Expectation Maximization sufficient statis-
tics in a single run of Value Elimination plus a second pass, which can never take longer than the first
one (and in practice is much faster). This two-pass procedure is analogous to the collect-distribute
evidence procedure in the Junction Tree algorithm, but here we do this via a search tree.

Let θX=x|pa(X)=y be a parameter associated with variableX with valuex and parentsY = pa(X)

when they have valuey. Assuming a maximum likelihood learning scenario3, to estimate
θX=x|pa(X)=y, we need to compute

f(X = x,pa(X) = y,E = e) =
∑

W\{X,pa(X)}

P (W, X = x,pa(X) = y,E = e)

which is a sum of joint probabilities of all configurations that are consistent with the assignment
{X = x,pa(X) = y}. If we were to turn off factor caching, we would enumerate all such variable
configurations and could compute the sum. When standard VE factors are used, however, this is no
longer possible wheneverX or any of its parents becomes subsumed. Fig. 2 illustrates an example
of a VE tree and the factors that are learned in the case of a Markov chain with an evidence node
at the end. We can readily estimate the parameters associated with variablesA andB as they are
not subsumed along any branch.C andD become subsumed, however, and we cannot obtain the
correct counts along all the branches that would lead toC andD in the full enumeration case.

To address this issue, we store a special value,F.tau, in each factor.F.tau holds the sum over
all path probabilities from the first level of the search tree to the level at which the factorF was

3For Bayesian networks the likelihood function decomposes such that maximizing the expectation of the
complete likelihood is equivalent to maximizing the “local likelihood” of each variable in the network.

either created or activated. For example,F6.tau in fig. 2 is simplyP (A = 1). Although we can
computeF3.tau directly, we can also compute it recursively usingF5.tau andF6.tau as shown in
the figure. This is because bothF5 andF6 subsumeF3: in the context{F5.Dset}, there exists a
(unique) valuedsub of F5.head4 s.t. F3 becomes activable. Likewise forF6. We cannot compute
F1.tau directly, but we can, recursively, fromF3.tau andF4.tau by taking advantage of a similar
subsumption relationship. In general, we can show that the following recursive relationship holds:

F.tau←
∑

F pa∈Fpa

F pa.tau×NSVF pa.head=dsub
×

∏
Fact∈Fact

Fact.val

F.val
(1)

whereFpa is the set of factors that subsumeF , Fact is the set of all factors (includingF) that be-
come active in the context of{F pa.Dset, F pa.head = dsub} andNSVF pa.head=dsub

is the product
of all newly single valued CPTs under the same context. For top-level factors (not subsumed by any
factor),F.tau = Pevidence/F.val, which is1.0 when there is a unique top-level factor.

Alg. 2 is a simple recursive computation of eq. 1 for each factor. We visit learned factors in the
reverse order in which they were learned to ensure that, for any factorF ′, F ′.tau is incremented
(line 13) by anyF that might have activatedF ′ (line 12). For example, in fig. 2,F4 usesF1 and
F2, soF4.tau needs to be updated beforeF1.tau andF2.tau. In line 11, we can increment the
counts for any NSV CPT entries sinceF.tau will account for the possible ways of reaching the
configuration{F.Dset, F.head = d} in an equivalent full enumeration tree.

Algorithm 1: FirstPass(level)

Input: GraphG
Output: A list of learned factors andPevidence

Select varV to branch on1
if V ==NONE then return2
Sset={}, Dset={}3
for d ∈ Dom[V] do4

V ← d5
prod = productOfAllNSVsAndActiveFactors(Dset, Sset)6
if prod != 0 then FirstPass(level+1)7
sum += prod8

Sset = Sset ∪ {V }9
cacheNewFactor(F.head← V ,F.val← sum, F.Sset← Sset, F.Dset← Dset);10

Algorithm 2: SecondPass()

Input: F : List of factors in the reverse order learned in the first pass andPevidence.
Result: Updated counts
foreach F ∈ F do1

if F.Dset = {} then2
F.tau← Pevidence/F.val3

else4
F.tau← 0.05
Assign vars inF.Dset to their values6

V ← F.head (last node to have been subsumed in this factor)7
foreach d ∈ Dom[V] do8

prod = productOfAllNSVsAndActiveFactors()9
prod∗ = F.tau10
foreach newly single-valued CPTC do count(C.child,C.parents)+=prod/Pevidence11

F ′=getListOfActiveFactors()12

for F ′ ∈ F ′ do F ′.tau+ = prod/F ′.val13

Most Probable Explanation We compute MPE using a very similar two-pass algorithm. In the
first pass, factors are used to store a maximum instead of a summation over variables in the Sset. We
also keep track of the value ofF.head at which the maximum is achieved. In the second pass, we
recursively find the optimal variable configuration by following the trail of factors that are activated
when we assign eachF.head variable to its maximum value starting from the last learned factor.

4Recall,F.head is the last variable to be added to a newly created factor in line 10 of alg. 1

4 MACHINE TRANSLATION WORD ALIGNMENT EXPERIMENTS

A major motivation for pursuing the type of representation and inference described above is to
make it possible to solve computationally-intensive real-world problems using large amounts of data,
while retaining the full generality and expressiveness afforded by the MDBN modeling language. In
the experiments below we compare running times of MDBNs to GIZA++ on IBM Models 1 through
4 and the M-HMM model. GIZA++ is a special-purpose optimized MT word alignment C++ tool
that is widely used in current state-of-the-art phrase-based MT systems [10] and at the time of this
writing is the only publicly available software that implements all of the IBM Models. We test on
French-English 107 hand-aligned sentences5 from a corpus of the European parliament proceedings
(Europarl [9]) and train on 10000 sentence pairs from the same corpus and of maximum number of
words 40. The Alignment Error Rate (AER) [13] evaluation metric quantifies how well the MPE
assignment to the hidden alignment variables matches human-generated alignments.

Several pruning and smoothing techniques are used by GIZA and MDBNs. GIZA prunes low lexical
(P (f |e)) probability values and uses a default small value for unseen (or pruned) probability table
entries. For models 3 and 4, for which there is no known polynomial time algorithm to perform
the full E-step or compute MPE, GIZA generates a set of high probability alignments using an M-
HMM and hill-climbing and collects EM counts over these alignments using M3 or M4. For MDBN
models we use the following pruning strategy: at each level of the search tree we prune values which,
together, account for the lowest specified percentage of the total probability mass of the product of
all newly active CPTs in line 6 of alg. 1. This is a more effective pruning than simply removing
low-probability values of each CPD because it factors in the joint contribution of multiple active
variables.

Table 1 shows a comparison of timing numbers obtained GIZA++ and MDBNs. The runtime num-
bers shown are for the combined tasks of training and decoding; however, training time dominates
given the difference in size between train and test sets. For models 1 and 2 neither GIZA nor MDBNs
perform any pruning. For the M-HMM, we prune 60% of probability mass at each level and use a
Dirichlet prior over the alignment variables such that long-range transitions are exponentially less
likely than shorter ones.6 This model achieves similar times and AER to GIZA’s. Interestingly,
without any pruning, the MDBN M-HMM takes 160 minutes to complete while only marginally
improving upon the pruned model. Experimenting with several pruning thresholds, we found that
AER would worsen much more slowly than runtime decreases.

Models 3 and 4 have treewidth equal to the number of alignment variables (because of the global
constraints tying them) and therefore require approximate inference. Using Model 3, and a drastic
pruning threshold that only keeps the value with the top probability at each level, we were able to
achieve an AER not much higher than GIZA’s. For M4, it achieves a best AER of 31.7% while we
do not improve upon Model3, most likely because a too restrictive pruning. Nevertheless, a simple
variation on Model3 in the MDBN framework achieves a lower AER than our regular M3 (with
pruning still the same). The M3-HMM hybrid model combines the Markov alignment dependencies
from the M-HMM model with the fertility model of M3.
MCMC Inference Sampling is widely used for inference in high-treewidth models. Although
MDBNs support Likelihood Weighing, it is very inefficient when the probability of evidence is very
small, as is the case in our MT models. Besides being slow, Markov chain Monte Carlo can be
problematic when the joint distribution is not positive everywhere, in particular in the presence of
determinism and hard constraints. Techniques such as blocking Gibbs sampling [8] try to address the
problem. Often, however, one has to carefully choose a problem-dependent proposal distribution.
We used MCMC to improve training of the M3-HMM model. We were able to achieve an AER of
32.8% (down from 39.1%) but using 400 minutes of uniprocessor time.

5 CONCLUSION
The existing classes of graphical models are not ideally suited for representing SMT models because
“natural” semantics for specifying the latter combine flavors of different GM types on top of standard
directed Bayesian network semantics:switching parentsfound in Bayesian Multinets [6], aggrega-
tion relationships such as in Probabilistic Relational Models [5], and existence uncertainty [7]. We

5Available athttp://www.cs.washington.edu/homes/karim
6French and English have similar word orders. On a different language pair, a different prior might be more

appropriate. With a uniform prior, the MDBN M-HMM has 36.0% AER.

Model GIZA++ MDBN
Init M1 M-HMM M1 M-HMM

M1 1m45s (47.7%) N/A 3m20s (48.0%) N/A
M2 2m02s (41.3%) N/A 5m30s (41.0%) N/A
M-HMM 4m05s (35.0%) N/A 4m15s (33.0%) N/A
M3 2m50 (45%) 5m20s (38.5%) 12m (43.6%) 9m (42.5%)
M4 5m20s (34.8%) 7m45s (31.7%) 25m (43.6%) 23m (42.6%)
M3-HMM N/A 9m30 (41.0%) 9m15s (39.1%)

MCMC 400m (32.8%)

Table 1:MDBN VE-based learning versus GIZA++ timings and %AER using 5 EM iterations. The columns
M1 and M-HMM correspond to the model that is used to initialize the model in the corresponding row. The
last row is a hybrid Model3-HMM model that we implemented using MDBNs and is not expressible using GIZA.

have introduced a generalization of dynamic Bayesian networks to easily and concisely build models
consisting of varying-length parallel asynchronous and interacting data streams. We have shown that
our framework is useful for expressing various statistical machine translation models. We have also
introduced new parameter estimation and decoding algorithms using exact and approximate search-
based probability computation. While our timing results are not yet as fast as a hand-optimized C++
program on the equivalent model, we have shown that even in this general-purpose framework of
MDBNs, our timing numbers are competitive and usable. Our framework can of course do much
more than the IBM and HMM models. One of our goals is to use this framework to rapidly prototype
novel MT systems and develop methods to statistically induce an interlingua. We also intend to use
MDBNs in other domains such as multi-party social interaction analysis.

References

[1] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesian inference via backtracking search. In
UAI-03, pages 20–28, San Francisco, CA, 2003. Morgan Kaufmann.

[2] J. Bilmes and C. Bartels. On triangulating dynamic graphical models. InUncertainty in Artificial Intelli-
gence: Proceedings of the 19th Conference, pages 47–56. Morgan Kaufmann, 2003.

[3] P. F. Brown, J. Cocke, S. A. Della Piettra, V. J. Della Piettra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and
P. S. Roossin. A statistical approach to machine translation.Computational Linguistics, 16(2):79–85,
June 1990.

[4] T. Dean and K. Kanazawa. Probabilistic temporal reasoning.AAAI, pages 524–528, 1988.

[5] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. InIJCAI,
pages 1300–1309, 1999.

[6] D. Geiger and D. Heckerman. Knowledge representation and inference in similarity networks and
Bayesian multinets.Artif. Intell., 82(1-2):45–74, 1996.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link structure.Journal
of Machine Learning Research, 3(4-5):697–707, May 2003.

[8] C. Jensen, A. Kong, and U. Kjaerulff. Blocking Gibbs sampling in very large probabilistic expert sys-
tems. InInternational Journal of Human Computer Studies. Special Issue on Real-World Applications of
Uncertain Reasoning., 1995.

[9] P. Koehn. Europarl: A multilingual corpus for evaluation of machine translation.
http://www.isi.edu/koehn/publications/europarl, 2002.

[10] P. Koehn, F. Och, and D. Marcu. Statistical phrase-based translation. InNAACL/HLT 2003, 2003.

[11] S. Lauritzen.Graphical Models. Oxford Science Publications, 1996.

[12] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, U.C.
Berkeley, Dept. of EECS, CS Division, 2002.

[13] F. J. Och and H. Ney. Improved statistical alignment models. InACL, pages 440–447, Oct 2000.

[14] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 2nd printing edition, 1988.

[15] S. Vogel, H. Ney, and C. Tillmann. HMM-based word alignment in statistical translation. InProceedings
of the 16th conference on Computational linguistics, pages 836–841, Morristown, NJ, USA, 1996.

