52

Supervised Learning of Probability Distributions

by Neural Networks

Eric B. Baum
Jet Propulsion Laboratory, Pasadena CA 91109

Frank Wilczek!
Department of Physics,Harvard University,Cambridge MA 02138

Abstract:

We propose that the back propagation algorithm for super-
vised learning can be generalized, put on a satisfactory conceptual
footing, and very likely made more efficient by defining the val-
ues of the output and input neurons as probabilities and varying
the synaptic weights in the gradient direction of the log likelihood,

rather than the ‘error’.

In the past thirty years many researchers have studied the
question of supervised learning in ‘neural’-like networks. Recently

'1=4 or the ‘general-

a learning algorithm called ‘back propagation
ized delta-rule’ has been applied to numerous problems including
the mapping of text to phonemes®, the diagnosis of illnesses® and
the classification of sonar targets’. In these applications, it would
often be natural to consider imperfect, or probabilistic informa-
tion. We believe that by considering supervised learning from this

slightly larger perspective, one can not only place back propaga-

! Permanent address: Institute for Theoretical Physics, Univer-
sity of California, Santa Barbara CA 93106

© American Institute of Physics 1988



53

tion on a more rigorous and general basis, relating it to other well
studied pattern recognition algorithms, but very likely improve its

performance as well.

The problem of supervised learning is to model some mapping
between input vectors and output vectors presented to us by some
real world phenomena. To be specific, consider the question of
medical diagnosis. The input vector corresponds to the symptoms
of the patient; the i-th component is defined to be 1 if symptom 1
is present and 0 if symptom i is absent. The output vector corre-
sponds to the illnesses, so that its j-th component is 1 if the j-th
illness is present and 0 otherwise. Given a data base consisting
of a number of diagnosed cases, the goal is to construct (learn) a
mapping which accounts for these examples and can be applied to
diagnose new patients in a reliable way. One could hope, for in-
stance, that such a learning algorithm might yield an expert system
to simulate the performance of doctors. Little expert advice would
be required for its design, which is advantageous both because ex-
perts’ time is valuable and because experts often have extraodinary

difficulty in describing how they make decisions.

A feedforward neural network implements such a mapping be-
tween input vectors and output vectors. Such a network has a set
of input nodes, one or several layers of intermediate nodes, and a
layer of output nodes. The nodes are connected in a forward di-
rected manner, so that the output of a node may be connected to
the inputs of nodes in subsequent layers, but closed loops do not
occur. See figure 1. The output of each node is assumed to be a
bounded semilinear function of its inputs. That is, if v; denotes
the output of the j-th node and w;; denotes the weight associated
with the connection of the output of the j-th node to the input of



54

the i-th, then the i-th neuron takes value v; = g(}_, wi;v;), where
g is a bounded, differentiable function called the activation func-
tion. g(z) = 1/(1 + e~%), called the logistic function, is frequently
used. Given a fixed set of weights {w;;}, we set the input node
values to equal some input vector, compute the value of the nodes

layer by layer until we compute the output nodes, and so generate
an output vector.

Figure 1: A 5 layer network. Note bottleneck at layer 3.



55

Such networks have been studied because of analogies to neu-
robiology, because it may be easy to fabricate them in hardware,
and because learning algorithms such as the Perceptron learning
algorithm®, Widrow- Hoff?, and backpropagation have been able
to choose weights w;; that solve interesting problems.

Given a set of input vectors s, together with associated target
values t;.‘, back propagation attempts to adjust the weights so as

to minimize the error E in achieving these target values, defined as

E=) E,=) (th —o¥)? (1)
u By

where o;.‘ is the output of the j-th node when s* is presented as
input. Back propagation starts with randomly chosen w;; and
then varies in the gradient direction of E until a local minimum
is obtained. Although only a locally optimal set of weights is ob-
tained, in a number of experiments the neural net so generated
has performed surprisingly well not only on the training set but on
subsequent data.?~® This performance is probably the main reason
for widespread interest in backpropagation.

It seems to us natural, in the context of the medical diagnosis
problem, the other real world problems to which backpropagation
has been applied, and indeed in any mapping problem where one
desires to generalize from a limited and noisy set of examples, to
interpret the output vector in probabilistic terms. Such an inter-
pretation is standard in the literature on pattern classification.®
Indeed, the examples might even be probabilistic themselves. That
is to say it might not be certain whether symptom 7 was present
in case p or not.

u T L . . .
Let s; represent the probability symptom i is present in case

i, and let t;f represent the probability disease 7 ocurred in case



56

. Consider for the moment the case where the t;-‘ are 1 or 0,
so that the cases are in fact fully diagnosed. Let f;(8, f) be our
prediction of the probability of disease 7 given input vector §, where
d is some set of parameters determined by our learning algorithm.

In the neural network case, the § are the connection weights and

fi (8%, {wis}) = 0?-

Now lacking a priori knowledge of good 8, the best one can do
is to choose the parameters f to maximize the likelihood that the
given set of examples should have occurred.!® The formula for this

likelihood, p, is immediate:

or

The extension of equation (2), and thus equation (3) to the

case where the { are probabilities, taking values in [0, 1], is straight-



57

forward*! and yields

tog(p) = Y= [41o0(43(6#,0)) + (1~ tlea(1 - (58| (&

1%)

Expressions of this sort often arise in physics and information the-
ory and are generally interpreted as an entropy.!!

We may now vary the {é} in the gradient direction of the en-
tropy. The back propagation algorithm generalizes immediately
from minimizing ‘Error’ or ‘Energy’ to maximizing entropy or log
likelihood, or indeed any other function of the outputs and the
inputs!2. Of course it remains true that the gradient can be com-
puted by back propagation with essentially the same number of
computations as are required to compute the output of the net-
work.

A backpropagation algorithm based on log-likelihood is not
only more intuitively appealing than one based on an ad-hoc def-
inition of error, but will make quite different and more accurate
predictions as well. Consider e.g. training the net on an exam-
ple which it already understands fairly well. Say t; = 0, and
fi(s°) = e. Now, from eqn(1l) dE/d f; = 2¢, so using ‘Error’ as a

*1 We may see this by constructing an equivalent larger set of
examples with the ¢ taking only values 0 or 1 with the appropriate
frequency. Thus assume the t;-‘ are rational numbers with denomi-
nator d and numerator n’; and let p = [], ; d%. What we mean by
the set of examples {¢t* : p =1,..., M} can be represented by con-
sidering a set of N = Mp examples {f;’} where for each p, E;-’ =0
for p(p — 1) <v < pp and 1 < vmod(d}) < (d;‘ — n;‘), and f;‘-’ —F |
otherwise. Now applying equation (3) gives equation (4), up to an

overall normalization.















