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Abstract

Separation of music signals is an interesting but difficult problem. It is
helpful for many other music researches such as audio content analysis.
In this paper, a new music signal separation method is proposed, which is
based on harmonic structure modeling. The main idea of harmonic struc-
ture modeling is that the harmonic structure of a music signal is stable,
so a music signal can be represented by a harmonic structure model. Ac-
cordingly, a corresponding separation algorithm is proposed. The main
idea is to learn a harmonic structure model for each music signal in the
mixture, and then separate signals by using these models to distinguish
harmonic structures of different signals. Experimental results show that
the algorithm can separate signals and obtain not only a very high Signal-
to-Noise Ratio (SNR) but also a rather good subjective audio quality.

1 Introduction

Audio content analysis is an important area in music research. There are many open prob-
lems in this area, such as content based music retrieval and classification, Computational
Auditory Scene Analysis (CASA), Multi-pitch Estimation, Automatic Transcription, Query
by Humming, etc. [1, 2, 3, 4]. In all these problems, content extraction and representation
is where the shoe pinches. In a song, the sounds of different instruments are mixed together,
and it is difficult to parse the information of each instrument. Separation of sound sources
in a mixture is a difficult problem and no reliable methods are available for the general
case. However, music signals are so different from general signals. So, we try to find a way
to separate music signals by utilizing the special character of music signals. After source
separation, many audio content analysis problems will become much easier. In this paper,
a music signal means a monophonic music signal performed by one instrument. A song is
a mixture of several music signals and one or more singing voice signals.

As we know, music signals are more “ordered” than voice. The entropy of music is much
more constant in time than that of speech [5]. More essentially, we found that an important
character of a music signal is that its harmonic structure is stable. And the harmonic struc-
tures of music signals performed by different instruments are different. So, a harmonic
structure model is built to represent a music signal. This model is the fundamental of the
separation algorithm. In the separation algorithm, an extended multi-pitch estimation al-



gorithm is used to extract harmonic structures of all sources, and a clustering algorithm is
used to calculate harmonic structure models. Then, signals are separated by using these
models to distinguish harmonic structures of different signals.

There are many other signal separation methods, such as ICA [6]. General signal separation
methods do not sufficiently utilize the special character of music signals. Gil-Jin and Te-
Won proposed a probabilistic approach to single channel blind signal separation [7], which
is based on exploiting the inherent time structure of sound sources by learning a priori
sets of basis filters. In our approach, training sets are not required, and all information
are directly learned from the mixture. Feng et al. applied FastICA to extract singing and
accompaniment from a mixture [8]. Vanroose used ICA to remove music background
from speech by subtracting ICA components with the lowest entropy [9]. Compared to
these approaches, our method can separate each individual instrument sound, preserve the
harmonic structure in the separated signals and obtain a good subjective audio quality. One
of the most important contributions of our method is that it can significantly improve the
accuracy of multi-pitch estimation. Compared to previous methods, our method learns
models from the primary multi-pitch estimation results, and uses these models to improve
the results. More importantly, pitches of different sources can be distinguished by these
models. This advantage is significant for automatic transcription.

The rest of this paper is organized as follows: Harmonic structure modeling is detailed in
Section two. The algorithm is described in section three. Experimental results are shown
in section four. Finally, conclusion and discussions are given in section five.

2 Harmonic structure modeling for music signals

A monophonic music signal s(t) can be represented by a sinusoidal model [10]:

s(t) =
R

∑

r=1

Ar(t) cos[θr(t)] + e(t) (1)

where Ar(t) and θr(t) =
∫ t

0
2πrf0(τ)dτ are the instantaneous amplitude and phase of the

rth harmonic, respectively, R is the maximal harmonic number, f0(τ) is the fundamental
frequency at time τ , e(t) is the noise component.

We divide s(t) into overlapped frames and calculate f l
0

and Al
r by detecting peaks in the

magnitude spectrum. Al
r = 0, if there doesn’t exist the rth harmonic. l = 1, . . . , L is the

frame index. f l
0

and [Al
1
, . . . , Al

R] describe the position and amplitudes of harmonics. We

normalize Al
r by multiplying a factor ρl = C/Al

1
( C is an arbitrary constant) to eliminate

the influence of the amplitude. We translate the amplitudes into a log scale, because the
human ear has a roughly logarithmic sensitivity to signal intensity. Harmonic Structure
Coefficient is then defined as equation (2). The timbre of a sound is mostly controlled

by the number of harmonics and the ratio of their amplitudes, so B
l = [Bl

1
, . . . , Bl

R],
which is free from the fundamental frequency and amplitude, exactly represents the timbre
of a sound. In this paper, these coefficients are used to represent the harmonic structure
of a sound. Average Harmonic Structure and Harmonic Structure Stability are defined as
follows to model music signals and measure the stability of harmonic structures.

• Harmonic Structure B
l, Bl

i is Harmonic Structure Coefficient:

B
l = [Bl

1
, . . . , Bl

R], Bl
i = log(ρlAl

i)/ log(ρlAl
1
), i = 1, . . . , R (2)

• Average Harmonic Structure (AHS): B̄ = 1

L

L
∑

l=1

B
l



• Harmonic Structure Stability (HSS):

HSS =
1
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∥
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=
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RL
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2 (3)

AHS and HSS are the mean and variance of B
l. Since timbres of most instruments are

stable, B
l varies little in different frames in a music signal and AHS is a good model

to represent music signals. On the contrary, B
l varies much in a voice signal and the

corresponding HSS is much bigger than that of a music signal. See figure 1.

0 50 100 150 200
−50

0

50

0 50 100 150 200
−50

0

50

(a) Spectra in different frames of a voice signal. The number of harmonics (significant peaks in
the spectrum) and their amplitude ratios are totally different.
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(b) Spectra in different frames of a piccolo signal. The number of harmonics (significant peaks
in the spectrum) and their amplitude ratios are almost the same.
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(c) The AHS and HSS of a oboe signal
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(f) The AHS and HSS of a female singing voice

Figure 1: Spectra, AHSs and HSSs of voice and music signals. In (c)-(f), x-axis is harmonic
number, y-axis is the corresponding harmonic structure coefficient.

3 Separation algorithm based on harmonic structure modeling

Without loss of generality, suppose we have a signal mixture consisting of one voice and
several music signals. The separation algorithm consists of four steps: preprocessing, ex-
traction of harmonic structures, music AHSs analysis, separation of signals.

In preprocessing step, the mean and energy of the input signal are normalized. In the sec-
ond step, the pitch estimation algorithm of Terhardt [11] is extended and used to extract
harmonic structures. This algorithm is suitable for estimating both the fundamental fre-
quency and all its harmonics. In Terhardt’s algorithm, in each frame, all spectral peaks
exceeding a given threshold are detected. The frequencies of these peaks are [f1, . . . , fK ],
K is the number of peaks. For a fundamental frequency candidate f , count the number of
fi which satisfies the following condition:



floor[(1 + d)fi/f ] ≥ (1 − d)fi/f (4)

floor(x) denotes the greatest integer less than or equal to x. This condition means whether
rif · (1 − d) ≤ fi ≤ rif · (1 + d). If the condition is fulfilled, fi is the frequency of
the rth

i harmonic component when fundamental frequency is f . For each fundamental

frequency candidate f , the coincidence number is calculated and f̂ corresponding to the
largest coincidence number is selected as the estimated fundamental frequency.

The original algorithm is extended in the following ways: Firstly, not all peaks exceeding
the given threshold are detected, only the significant ones are selected by an edge detection
procedure. This is very important for eliminating noise and achieving high performances
in next steps. Secondly, not only the fundamental frequency but also all its harmonics are
extracted, then B can be calculated. Thirdly, the original optimality criterion is to select

f̂ corresponding to the largest coincidence number. This criterion is not stable when the
signal is polyphonic, because harmonic components of different sources may influence
each other. A new optimality criterion is define as follows (n is the coincidence number):

d =
1

n

K
∑

i=1,fi coincident with f

|ri − fi/f |

ri

(5)

f̂ corresponding to the smallest d is the estimated fundamental frequency. The new cri-
terion measures the precision of coincidence. For each fundamental frequency, harmonic
components of the same source are more probably to have a high coincidence precision
than those of a different source. So, the new criterion is helpful for separation of harmonic
structures of different sources. Note that, the coincidence number is required to be larger
than a threshold, such as 4-6. This requirement eliminates many errors. Finally, in the orig-
inal algorithm, only one pitch was detected in each frame. Here, the sound is polyphonic.
So, all pitches for which the corresponding d is below a given threshold are extracted.

After harmonic structure extraction, a data set of harmonic structures is obtained. As the
analysis in section two, in different frames, music harmonic structures of the same instru-
ment are similar to each other and different from those of other instruments. So, in the data
set all music harmonic structures form several high density clusters. Each cluster corre-
sponds to an instrument. Voice harmonic structures scatter around like background noise,
because the harmonic structure of the voice signal is not stable.

In the third step, NK algorithm [12] is used to learn music AHSs. NK algorithm is a clus-
tering algorithm, which can cluster data on data sets consisting of clusters with different
shapes, densities, sizes and even with some background noise. It can deal with high di-
mensional data sets. Actually, the harmonic structure data set is such a data set. Clusters
of harmonic structures of different instruments have different densities. Voice harmonic
structure are background noise. Each data point, a harmonic structure, has a high dimen-
sionality (20 in our experiments). In NK algorithm, first find K neighbors for each point
and construct a neighborhood graph. Each point and its neighbors form a neighborhood.
Then local PCA is used to calculate eigenvalues of a neighborhood. In a cluster, data points
are close to each other and the neighborhood is small, so the corresponding eigenvalues are
small. On the contrary, for a noise point, corresponding eigenvalues are much bigger. So
noise points can be removed by eigenvalue analysis. After denoising, in the neighborhood
graph, all points of a cluster are connected together by edges between neighbors. If two
clusters are connected together, there must exist long edges between them. Then the eigen-
values of the corresponding neighborhoods are bigger than others. So all edges between
clusters can be found and removed by eigenvalue analysis. Then data points are clustered
correctly and AHSs can be obtained by calculate the mean of each cluster.



In the separation step, all harmonic structures of an instrument in all frames are extracted
to reconstruct the corresponding music signals and then removed from the mixture. After
removing all music signals, the rest of the mixture is the separated voice signal.

The procedure of music harmonic structure detection is detailed as follows. Given a music
AHS [B̄1, . . . , B̄R] and a fundamental frequency candidate f , a music harmonic structure
is predicted. [f, 2f, . . . , Rf ] and [B̄1, . . . , B̄R] are its frequencies and harmonic structure
coefficients. The closest peak in the magnitude spectrum for each predicted harmonic
component is detected. Suppose [f1, . . . , fR] and [B1, . . . , BR] are the frequencies and
harmonic structure coefficients of these peaks (measured peaks). Formula 6 is defined to
calculate the distance between the predicted harmonic structure and the measured peaks.

D(f) =
R
∑

r=1,B̄r>0,Br>0

{∆fr · (rf)−p + B̄r

B̄max

× q∆fr · (rf)−p}

+ a
R
∑

r=1,B̄r>0,Br>0

( B̄r

B̄max

)(B̄r − Br)
2

(6)

The first part of D is a modified version of Two-Way Mismatch measure defined by Maher
and Beauchamp, which measures the frequency difference between predicted peaks and
measured peaks [13], where p and q are parameters, and ∆fr = |fr − r · f |. The second
part measures the shape difference between the two, a is a normalization coefficient. Note
that, only harmonic components with none-zero harmonic structure coefficients are con-

sidered. Let f̂ indicate the fundamental frequency candidate corresponding to the smallest

distance between the predicted peaks and the actual spectral peaks. If D(f̂) is smaller
than a threshold Td, a music harmonic structure is detected. Otherwise there is no music
harmonic structure in the frame. If a music harmonic structure is detected, the correspond-
ing measured peaks in the spectrum are extracted, and the music signal is reconstructed
by IFFT. Smoothing between frames is needed to eliminate errors and click noise between
frames.

4 Experimental results

We have tested the performance of the proposed method on mixtures of different voice
and music signals. The sample rate of the mixtures is 22.05kHz. Audio files for all the
experiments are accessible at the website1.

Figure 2 shows experimental results. In experiments 1 and 2, the mixed signals consist of
one voice signal and one music signal. In experiment 3, the mixture consists of two music
signals. In experiment 4, the mixture consists of one voice and two music signals. Table 1
shows SNR results. It can be seen that the mixtures are well separated into voice and music
signals and very high SNRs are obtained in the separated signals. Experimental results
show that music AHS is a good model for music signal representation and separation.
There is another important fact that should be emphasized. In the separation procedure,
music harmonic structures are detected by the music AHS model and separated from the
mixture, and most of the time voice harmonic structures remain almost untouched. This
procedure makes separated signals with a rather good subjective audio quality due to the
good harmonic structure in the separated signals. Few existing methods can obtain such a
good result because the harmonic structure is distorted in most of the existing methods.

It is difficult to compare our method with other methods, because they are so different.
However, we compared our method with a speech enhancement method, because separation

1http://www.au.tsinghua.edu.cn/szll/bodao/zhangchangshui/bigeye/member/zyghtm/
experiments.htm



Table 1: SNR results (DB): snrv , snrm1 and snrm2 are the SNRs of voice and music
signals in the mixed signal. snr′e is the SNR of speech enhancement result. snr′v , snr′m1

and snr′m2
are the SNRs of the separated voice and music signals.

snrv snrm1 snrm2 snr′e snr′v snr′m1
snr′m2

Total inc.

Experiment 1 -7.9 7.9 / -6.0 6.7 10.8 / 17.5
Experiment 2 -5.2 5.2 / -1.5 6.6 10.0 / 16.6
Experiment 3 / 1.6 -1.6 / / 9.3 7.1 16.4
Experiment 4 -10.0 0.7 -2.2 / 2.8 8.6 6.3 29.2

of voice and music can be regarded as a speech enhancement problem by regarding music
as background noise. Figure 2 (b), (d) give speech enhancement results obtained by a
speech enhancement software which tries to estimate the spectrum of noise in the pause
of speech and enhance the speech by spectral subtraction [14]. Detecting pauses in speech
with music background and enhancing speech with fast music noise are both very difficult
problems, so traditional speech enhancement techniques can’t work here.

5 Conclusion and discussion

In this paper, a harmonic structure model is proposed to represent music signals and used
to separate music signals. Experimental results show a good performance of this method.

The proposed method has many applications, such as multi-pitch estimation, audio content
analysis, audio edit, speech enhancement with music background, etc.

Multi-pitch estimation is an important problem in music research. There are many exist-
ing methods, such as pitch perception model based methods, and probabilistic approaches
[4, 15, 16, 17]. However, multi-pitch estimation is a very difficult problem and remains
unsolved. Furthermore, it is difficult to distinguish pitches of different instruments in the
mixture. In our algorithm, not only harmonic structures but also corresponding fundamen-
tal frequencies are extracted. So, the algorithm is also a new multi-pitch estimation method.
It analyzes the primary multi-pitch estimation results and learns models to represent music
signals and improve multi-pitch estimation results. More importantly, pitches of different
sources can be distinguished by the AHS models. This advantage is significant for auto-
matic transcription. Figure 2 (f) shows multi-pitch estimation results in experiment 3. It
can be seen that, the multi-pitch estimation results are fairly good.

The proposed method is useful for melody extraction. As we know, in a mixed signal,
multi-pitch estimation is a difficult problem. After separation, pitch estimation on the sep-
arated voice signal that contains melody becomes a monophonic pitch estimation problem,
which can be done easily. The estimated pitch sequence represents the melody of the song.
Then, many content base audio analysis tasks such as audio retrieval and classification
become much easier and many midi based algorithms can be used on audio files.

There are still some limitations. Firstly, the proposed algorithm doesn’t work for non-
harmonic instruments, such as some drums. Some rhythm tracking algorithms can be used
instead to separate drum sounds. Fortunately, most instrument sounds are harmonic. Sec-
ondly, for some instruments, the timbre in the onset is somewhat different from that in
the stable duration. Also, different performing methods (pizz. or arco) produces different
timbres. In these cases, the music harmonic structures of this instrument will form several
clusters, not one. Then a GMM model instead of an average harmonic structure model
(actually a point model) should be used to represent the music.
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Figure 2: Experimental results.
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