Improved Risk Tail Bounds
for On-Line Algorithms

Nicolo Cesa-Bianchi
DSI, Università di Milano
via Comelico 39
20135 Milano, Italy
cesa-bianchi@dsi.unimi.it

Claudio Gentile
DICOM, Università dell’Insubria
via Mazzini 5
21100 Varese, Italy
gentile@dsi.unimi.it

Abstract

We prove the strongest known bound for the risk of hypotheses selected from the ensemble generated by running a learning algorithm incrementally on the training data. Our result is based on proof techniques that are remarkably different from the standard risk analysis based on uniform convergence arguments.

1 Introduction

In this paper, we analyze the risk of hypotheses selected from the ensemble obtained by running an arbitrary on-line learning algorithm on an i.i.d. sequence of training data. We describe a procedure that selects from the ensemble a hypothesis whose risk is, with high probability, at most

\[M_n + O \left(\frac{(\ln n)^2}{n} + \sqrt{\frac{M_n \ln n}{n}} \right), \]

where \(M_n \) is the average cumulative loss incurred by the on-line algorithm on a training sequence of length \(n \). Note that this bound exhibits the “fast” rate \((\ln n)^2/n \) whenever the cumulative loss \(nM_n \) is \(O(1) \).

This result is proven through a refinement of techniques that we used in [2] to prove the substantially weaker bound \(M_n + O\left(\sqrt{(\ln n)/n}\right) \). As in the proof of the older result, we analyze the empirical process associated with a run of the on-line learner using exponential inequalities for martingales. However, this time we control the large deviations of the on-line process using Bernstein’s maximal inequality rather than the Azuma-Hoeffding inequality. This provides a much tighter bound on the average risk of the ensemble. Finally, we relate the risk of a specific hypothesis within the ensemble to the average risk. As in [2], we select this hypothesis using a deterministic sequential testing procedure, but the use of Bernstein’s inequality makes the analysis of this procedure far more complicated.

The study of the statistical risk of hypotheses generated by on-line algorithms, initiated by Littlestone [5], uses tools that are sharply different from those used for uniform convergence analysis, a popular approach based on the manipulation of suprema of empirical

*Part of the results contained in this paper have been presented in a talk given at the NIPS 2004 workshop on “(Ab)Use of Bounds”.
processes (see, e.g., [3]). Unlike uniform convergence, which is tailored to empirical risk minimization, our bounds hold for any learning algorithm. Indeed, disregarding efficiency issues, any learner can be run incrementally on a data sequence to generate an ensemble of hypotheses.

The consequences of this line of research to kernel and margin-based algorithms have been presented in our previous work [2].

Notation. An example is a pair \((x, y)\), where \(x \in \mathcal{X}\) (which we call instance) is a data element and \(y \in \mathcal{Y}\) is the label associated with it. Instances \(x\) are tuples of numerical and/or symbolic attributes. Labels \(y\) belong to a finite set of symbols (the class elements) or to an interval of the real line, depending on whether the task is classification or regression. We allow a learning algorithm to output hypotheses of the form \(h : \mathcal{X} \rightarrow \mathcal{D}\), where \(\mathcal{D}\) is a decision space not necessarily equal to \(\mathcal{Y}\). The goodness of hypothesis \(h\) on example \((x, y)\) is measured by the quantity \(C(h(x), y)\), where \(C : \mathcal{D} \times \mathcal{Y} \rightarrow \mathbb{R}\) is a nonnegative and bounded loss function.

2 A bound on the average risk

An on-line algorithm \(A\) works in a sequence of trials. In each trial \(t = 1, 2, \ldots\) the algorithm takes as input a hypothesis \(H_{t-1}\) and an example \(Z_t = (X_t, Y_t)\), and returns a new hypothesis \(H_t\) to be used in the next trial. We follow the standard assumptions in statistical learning: the sequence of examples \(Z^n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}\) is drawn i.i.d. according to an unknown distribution over \(\mathcal{X} \times \mathcal{Y}\). We also assume that the loss function \(\ell\) satisfies \(0 \leq \ell \leq 1\). The success of a hypothesis \(h\) is measured by the risk of \(h\), denoted by \(\text{risk}(h)\). This is the expected loss of \(h\) on an example \((X, Y)\) drawn from the underlying distribution, \(\text{risk}(h) = E[\ell(h(X), Y)]\). Define also \(\text{risk}_{\text{emp}}(h)\) to be the empirical risk of \(h\) on a sample \(Z^n\),

\[
\text{risk}_{\text{emp}}(h) = \frac{1}{n} \sum_{t=1}^{n} \ell(h(X_t), Y_t).
\]

Given a sample \(Z^n\) and an on-line algorithm \(A\), we use \(H_0, H_1, \ldots, H_{n-1}\) to denote the ensemble of hypotheses generated by \(A\). Note that the ensemble is a function of the random training sample \(Z^n\). Our bounds hinge on the sample statistic

\[
M_n = M_n(Z^n) = \frac{1}{n} \sum_{t=1}^{n} \ell(H_{t-1}(X_t), Y_t)
\]

which can be easily computed as the on-line algorithm is run on \(Z^n\).

The following bound, a consequence of Bernstein’s maximal inequality for martingales due to Freedman [4], is of primary importance for proving our results.

Lemma 1 Let \(L_1, L_2, \ldots\) be a sequence of random variables, \(0 \leq L_t \leq 1\). Define the bounded martingale difference sequence \(V_t = E[L_t \mid L_1, \ldots, L_{t-1}] - L_t\) and the associated martingale \(S_n = V_1 + \ldots + V_n\) with conditional variance \(K_n = \sum_{t=1}^{n} \text{Var}[L_t \mid L_1, \ldots, L_{t-1}]\). Then, for all \(s, k \geq 0\),

\[
\mathbb{P}(S_n \geq s, K_n \leq k) \leq \exp \left(-\frac{s^2}{2k + 2s/3}\right).
\]

The next proposition, derived from Lemma 1, establishes a bound on the average risk of the ensemble of hypotheses.
Proposition 2 Let H_0, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary on-line algorithm A. Then, for any $0 < \delta \leq 1$,

$$
\mathbb{P}\left(\frac{1}{n} \sum_{t=1}^{n} \text{risk}(H_{t-1}) \geq M_n + \frac{36}{n} \ln \left(\frac{n M_n + 3}{\delta} \right) + 2 \sqrt{\frac{M_n}{n} \ln \left(\frac{n M_n + 3}{\delta} \right)} \right) \leq \delta.
$$

The bound shown in Proposition 2 has the same rate as a bound recently proven by Zhang [6, Theorem 5]. However, rather than deriving the bound from Bernstein inequality as we do, Zhang uses an ad hoc argument.

Proof. Let

$$
\mu_n = \frac{1}{n} \sum_{t=1}^{n} \text{risk}(H_{t-1}) \quad \text{and} \quad V_{t-1} = \text{risk}(H_{t-1}) - \ell(H_{t-1}(X_t), Y_t) \quad \text{for} \quad t \geq 1.
$$

Let κ_t be the conditional variance $\text{Var}(\ell(H_{t-1}(X_t), Y_t) \mid Z_1, \ldots, Z_{t-1})$. Also, set for brevity $K_n = \sum_{t=1}^{n} \kappa_t$, $K'_n = \sum_{t=1}^{n} \kappa_{t-1}$, and introduce the function $A(x) = 2 \ln \left(\frac{x + 1}{x + 3} \right)$ for $x \geq 0$. We find upper and lower bounds on the probability

$$
\mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(K_n) + \sqrt{A(K_n) K_n} \right).
$$

The upper bound is determined through a simple stratification argument over Lemma 1. We can write

$$
\mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(K_n) + \sqrt{A(K_n) K_n} \right)
\leq \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(K'_n) + \sqrt{A(K'_n) K'_n} \right)
\leq \sum_{s=0}^{n} \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(s) + \sqrt{A(s) s}, K'_n = s \right)
\leq \sum_{s=0}^{n} \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(s) + \sqrt{A(s) s}, K_n \leq s + 1 \right)
\leq \sum_{s=0}^{n} \exp\left(-\frac{\frac{2}{3} (A(s) + \sqrt{A(s) s})^2}{2(s + 1)} \right) \quad \text{(using Lemma 1)}.
$$

Since

$$
\frac{\frac{2}{3} (A(s) + \sqrt{A(s) s})^2}{2(s + 1)} \geq A(s)/2 \quad \text{for all} \quad s \geq 0,
$$

we obtain

$$
(1) \leq \sum_{s=0}^{n} e^{-A(s)/2} = \sum_{s=0}^{n} \frac{\delta}{(s + 1)(s + 3)} < \delta.
$$

As far as the lower bound on (1) is concerned, we note that our assumption $0 \leq \ell \leq 1$ implies $\kappa_t \leq \text{risk}(H_{t-1})$ for all t which, in turn, gives $K_n \leq n \mu_n$. Thus

$$
(1) = \mathbb{P}\left(n \mu_n - n M_n \geq A(K_n) + \sqrt{A(K_n) K_n} \right)
\geq \mathbb{P}\left(n \mu_n - n M_n \geq A(n \mu_n) + \sqrt{A(n \mu_n) n \mu_n} \right)
= \mathbb{P}\left(2n \mu_n \geq 2n M_n + 3A(n \mu_n) + \sqrt{4n M_n A(n \mu_n) + 5A(n \mu_n)^2} \right)
= \mathbb{P}\left(x \geq B + \frac{3}{2} A(x) + \sqrt{B A(x) + \frac{5}{4} A^2(x)} \right),
$$
where we set for brevity \(x = n\mu_n \) and \(B = nM_n \). We would like to solve the inequality
\[
x \geq B + \frac{3}{2}A(x) + \sqrt{B A(x) + \frac{3}{4}A^2(x)}
\]

w.r.t. \(x \). More precisely, we would like to find a suitable upper bound on the (unique) \(x^* \) such that the above is satisfied as an equality.

A (tedious) derivative argument along with the upper bound \(A(x) \leq 4 \ln \left(\frac{x + 3}{\delta} \right) \) show that
\[
x' = B + 2\sqrt{B \ln \left(\frac{B + 3}{\delta} \right)} + 36 \ln \left(\frac{B + 3}{\delta} \right)
\]

makes the left-hand side of (3) larger than its right-hand side. Thus \(x' \) is an upper bound on \(x^* \), and we conclude that
\[
(1) \geq \mathbb{P} \left(x \geq B + 2\sqrt{B \ln \left(\frac{B + 3}{\delta} \right)} + 36 \ln \left(\frac{B + 3}{\delta} \right) \right)
\]

which, recalling the definitions of \(x \) and \(B \), and combining with (2), proves the bound. \(\square \)

3 Selecting a good hypothesis from the ensemble

If the decision space \(D \) of \(A \) is a convex set and the loss function \(\ell \) is convex in its first argument, then via Jensen’s inequality we can directly apply the bound of Proposition 2 to the risk of the average hypothesis \(H = \frac{1}{n} \sum_{t=1}^{n} H_t \). This yields
\[
\mathbb{P} \left(\text{risk}(H) \geq M_n + \frac{36}{n} \ln \left(\frac{nM_n + 3}{\delta} \right) + 2\sqrt{\frac{M_n}{n} \ln \left(\frac{nM_n + 3}{\delta} \right)} \right) \leq \delta \quad (4)
\]

Observe that this is a \(O(1/n) \) bound whenever the cumulative loss \(nM_n \) is \(O(1) \).

If the convexity hypotheses do not hold (as in the case of classification problems), then the bound in (4) applies to a hypothesis randomly drawn from the ensemble (this was investigated in [1] though with different goals).

In this section we show how to deterministically pick from the ensemble a hypothesis whose risk is close to the average ensemble risk.

To see how this could be done, let us first introduce the functions
\[
E_\delta(r, t) = \frac{8B}{3(n-t)} + \sqrt{\frac{2Br}{n-t}} \quad \text{and} \quad c_\delta(r, t) = E_\delta \left(r + \sqrt{\frac{2Br}{n-t}}, t \right),
\]

with \(B = \ln \left(\frac{n(n+2)}{\delta} \right) \).

Let \(\text{risk}_\text{emp}(H_t, t+1) + E_\delta \left(\text{risk}_\text{emp}(H_t, t+1), t \right) \) be the penalized empirical risk of hypothesis \(H_t \), where
\[
\text{risk}_\text{emp}(H_t, t+1) = \frac{1}{n-t} \sum_{i=t+1}^{n} \ell(H_t(X_i), Y_i)
\]

is the empirical risk of \(H_t \) on the remaining sample \(Z_{t+1}, \ldots, Z_n \). We now analyze the performance of the learning algorithm that returns the hypothesis \(\tilde{H} \) minimizing the penalized risk estimate over all hypotheses in the ensemble, i.e.,
\[
\tilde{H} = \arg\min_{0 \leq i < n} \left(\text{risk}_\text{emp}(H_t, t+1) + E_\delta \left(\text{risk}_\text{emp}(H_t, t+1), t \right) \right). \quad (5)
\]

\(^1\)Note that, from an algorithmic point of view, this hypothesis is fairly easy to compute. In particular, if the underlying on-line algorithm is a standard kernel-based algorithm, \(\tilde{H} \) can be calculated via a single sweep through the example sequence.
Lemma 3 Let H_0, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary online algorithm A working with a loss ℓ satisfying $0 \leq \ell \leq 1$. Then, for any $0 < \delta \leq 1$, the hypothesis \hat{H} satisfies

$$P\left(\text{risk}(\hat{H}) > \min_{0 \leq t < n} \left(\text{risk}(H_t) + 2c_8(\text{risk}(H_t), t) \right) \right) \leq \delta.$$

Proof. We introduce the following short-hand notation

$$R_t = \text{risk}_{\text{emp}}(H_t, t+1), \quad \hat{T} = \arg\min_{0 \leq t < n} (R_t + E_8(R_t, t))$$

$$T^* = \arg\min_{0 \leq t < n} (\text{risk}(H_t) + 2c_8(\text{risk}(H_t), t)).$$

Also, let $H^* = H_{T^*}$ and $R^* = \text{risk}_{\text{emp}}(H_{T^*}, T^* + 1) = R_{T^*}$. Note that \hat{H} defined in (5) coincides with $H_{\hat{T}}$. Finally, let

$$Q(r, t) = \frac{\sqrt{2B(2B + 9r(n-t))} - 2B}{3(n-t)}.$$

With this notation we can write

$$P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2c_8(\text{risk}(H^*), T^*) \right)$$

$$\leq P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2c_8(R^* - Q(R^*, T^*), T^*) \right)$$

$$+ P\left(\text{risk}(H^*) < R^* - Q(R^*, T^*) \right)$$

$$\leq P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2c_8(R^* - Q(R^*, T^*), T^*) \right)$$

$$+ \sum_{t=0}^{n-1} P\left(\text{risk}(H_t) < R_t - Q(R_t, t) \right).$$

Applying the standard Bernstein’s inequality (see, e.g., [3, Ch. 8]) to the random variables R_t with $|R_t| \leq 1$ and expected value $\text{risk}(H_t)$, and upper bounding the variance of R_t with $\text{risk}(H_t)$, yields

$$P\left(\text{risk}(H_t) < R_t - \frac{B + \sqrt{B(2B + 18(n-t)\text{risk}(H_t))}}{3(n-t)} \right) \leq e^{-B}.$$

With a little algebra, it is easy to show that

$$\text{risk}(H_t) < R_t - \frac{B + \sqrt{B(2B + 18(n-t)\text{risk}(H_t))}}{3(n-t)}$$

is equivalent to $\text{risk}(H_t) < R_t - Q(R_t, t)$. Hence, we get

$$P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2c_8(\text{risk}(H^*), T^*) \right)$$

$$\leq P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2c_8(R^* - Q(R^*, T^*), T^*) \right) + ne^{-B}$$

$$\leq P\left(\text{risk}(\hat{H}) > \text{risk}(H^*) + 2E_8(R^*, T^*) \right) + ne^{-B}.$$
where in the last step we used
\[Q(r, t) \leq \sqrt{\frac{2Br}{n-t}} \quad \text{and} \quad c_\delta \left(r - \sqrt{\frac{2Br}{n-t}} \right) = \mathcal{E}_\delta(r, t). \]

Set for brevity \(\mathcal{E} = \mathcal{E}_\delta(R^*, T^*) \). We have
\[
\mathbb{P}(\text{risk}(\tilde{H}) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
= \mathbb{P}(\text{risk}(\tilde{H}) > \text{risk}(H^*) + 2\mathcal{E}, R_{\tilde{T}} + \mathcal{E}_\delta(R_{\tilde{T}}, \tilde{T}) \leq R^* + \mathcal{E})
\]
(since \(R_{\tilde{T}} + \mathcal{E}_\delta(R_{\tilde{T}}, \tilde{T}) \leq R^* + \mathcal{E} \) holds with certainty)
\[
\leq \sum_{t=0}^{n-1} \mathbb{P}(R_t + \mathcal{E}_\delta(R_t, t) \leq R^* + \mathcal{E}, \text{risk}(H_t) > \text{risk}(H^*) + 2\mathcal{E}).
\]

Now, if \(R_t + \mathcal{E}_\delta(R_t, t) \leq R^* + \mathcal{E} \) holds, then at least one of the following three conditions \(\text{risk}(H_t) - \mathcal{E}_\delta(R_t, t), \text{risk}(H_t) > \text{risk}(H^*) + \mathcal{E}, \text{risk}(H_t) - \text{risk}(H^*) < 2\mathcal{E} \) must hold. Hence, for any fixed \(t \) we can write
\[
\mathbb{P}(R_t + \mathcal{E}_\delta(R_t, t) \leq R^* + \mathcal{E}, \text{risk}(H_t) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
\leq \mathbb{P}(R_t \leq \text{risk}(H_t) - \mathcal{E}_\delta(R_t, t), \text{risk}(H_t) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
+ \mathbb{P}(R^* > \text{risk}(H^*) + \mathcal{E}, \text{risk}(H_t) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
+ \mathbb{P}(\text{risk}(H_t) - \text{risk}(H^*) < 2\mathcal{E}, \text{risk}(H_t) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
\leq \mathbb{P}(R_t \leq \text{risk}(H_t) - \mathcal{E}_\delta(R_t, t)) + \mathbb{P}(R^* > \text{risk}(H^*) + \mathcal{E}).
\]

Plugging (7) into (6) we have
\[
\mathbb{P}(\text{risk}(\tilde{H}) > \text{risk}(H^*) + 2\mathcal{E})
\]
\[
\leq \sum_{t=0}^{n-1} \mathbb{P}(R_t \leq \text{risk}(H_t) - \mathcal{E}_\delta(R_t, t)) + n \mathbb{P}(R^* > \text{risk}(H^*) + \mathcal{E})
\]
\[
\leq n e^{-B} + n \sum_{t=0}^{n-1} \mathbb{P}(R_t \geq \text{risk}(H_t) + \mathcal{E}_\delta(R_t, t)) \leq n e^{-B} + n^2 e^{-B},
\]
where in the last two inequalities we applied again Bernstein’s inequality to the random variables \(R_t \) with mean \(\text{risk}(H_t) \). Putting together we obtain
\[
\mathbb{P}(\text{risk}(\tilde{H}) > \text{risk}(H^*) + 2\mathcal{E}(\text{risk}(H^*), T^*)) \leq (2n + n^2) e^{-B}
\]
which, recalling that \(B = \ln \frac{n(n+2)}{\delta} \), implies the thesis. \(\square \)

Fix \(n \geq 1 \) and \(\delta \in (0, 1) \). For each \(t = 0, \ldots, n-1 \), introduce the function
\[
f_t(x) = x + \frac{11C}{3} \ln(n-t) + \frac{1}{n-t} + 2 \sqrt{\frac{2C x}{n-t}}, \quad x \geq 0,
\]
where \(C = \ln \frac{2n(n+2)}{\delta} \). Note that each \(f_t \) is monotonically increasing. We are now ready to state and prove the main result of this paper.
Theorem 4 Fix any loss function ℓ satisfying $0 \leq \ell \leq 1$. Let H_0, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary on-line algorithm A and let \tilde{H} be the hypothesis minimizing the penalized empirical risk expression obtained by replacing c_8 with $c_8/2$ in (5). Then, for any $0 < \delta \leq 1$, \tilde{H} satisfies

$$\mathbb{P}\left(\text{risk}(\tilde{H}) \geq \min_{0 \leq t < n} f_t(M_{t,n} + \frac{36}{n-t} \ln \frac{2n(n+3)}{\delta} + 2 \sqrt{\frac{M_{t,n} \ln \frac{2n(n+3)}{\delta}}{n-t}})\right) \leq \delta,$$

where $M_{t,n} = \frac{1}{n-t} \sum_{i=t+1}^{n} \ell(H_{i-1}(X_i), Y_i)$. In particular, upper bounding the minimum over t with $t = 0$ yields

$$\mathbb{P}\left(\text{risk}(\tilde{H}) \geq f_0 \left(M_n + \frac{36}{n} \ln \frac{2n(n+3)}{\delta} + 2 \sqrt{\frac{M_n \ln \frac{2n(n+3)}{\delta}}{n}}\right)\right) \leq \delta. \quad (8)$$

For $n \to \infty$, bound (8) shows that $\text{risk}(\tilde{H})$ is bounded with high probability by

$$M_n + O\left(\frac{\ln^2 n}{n} + \sqrt{\frac{M_n \ln n}{n}}\right).$$

If the empirical cumulative loss $n M_n$ is small (say, $M_n \leq c/n$, where c is constant with n), then our penalized empirical risk minimizer \tilde{H} achieves a $O((\ln^2 n)/n)$ risk bound. Also, recall that, in this case, under convexity assumptions the average hypothesis \bar{H} achieves the sharper bound $O(1/n)$.

Proof. Let $\mu_{t,n} = \frac{1}{n-t} \sum_{i=t+1}^{n} \text{risk}(H_i)$. Applying Lemma 3 with $c_8/2$ we obtain

$$\mathbb{P}\left(\text{risk}(\tilde{H}) > \min_{0 \leq t < n} \left(\text{risk}(H_t) + c_8/2(\text{risk}(H_t), t)\right)\right) \leq \frac{\delta}{2}. \quad (9)$$

We then observe that

$$\min_{0 \leq t < n} \left(\text{risk}(H_t) + c_8/2(\text{risk}(H_t), t)\right)$$

$$= \min_{0 \leq t < n} \min_{t \leq i < n} \left(\text{risk}(H_i) + c_8/2(\text{risk}(H_i), i)\right)$$

$$\leq \min_{0 \leq t < n} \frac{1}{n-t} \sum_{i=t}^{n-1} \left(\text{risk}(H_i) + c_8/2(\text{risk}(H_i), i)\right)$$

$$\leq \min_{0 \leq t < n} \left(\mu_{t,n} + \frac{1}{n-t} \sum_{i=t}^{n-1} \frac{8}{3} + \frac{1}{n-t} \sum_{i=t}^{n-1} \left(\frac{2C \text{risk}(H_i)}{n-i} + \frac{C}{n-i}\right)\right)$$

(using the inequality $\sqrt{x+y} \leq \sqrt{x} + \frac{y}{2\sqrt{x}}$)

$$= \min_{0 \leq t < n} \left(\mu_{t,n} + \frac{1}{n-t} \sum_{i=t}^{n-1} \frac{11}{3} + \frac{1}{n-t} \sum_{i=t}^{n-1} \left(\frac{2C \text{risk}(H_i)}{n-i}\right)\right)$$

$$\leq \min_{0 \leq t < n} \left(\mu_{t,n} + \frac{11C}{3} \ln(n-t) + \frac{1}{n-t} \sum_{i=t}^{k} \left(\frac{2C \mu_{t,n}}{n-t}\right)\right)$$

(using $\sum_{i=1}^{k} 1/i \leq 1 + \ln k$ and the concavity of the square root)

$$= \min_{0 \leq t < n} f_t(\mu_{t,n}).$$
Now, it is clear that Proposition 2 can be immediately generalized to imply the following set of inequalities, one for each $t = 0, \ldots, n - 1$,

$$\Pr \left(\mu_{t,n} \geq M_{t,n} + \frac{36 A}{n-t} + \frac{2}{\delta \sqrt{A}} \frac{M_{t,n} A}{n-t} \right) \leq \frac{\delta}{2n} \quad (10)$$

where $A = \ln \frac{2n(n+3)}{\delta}$. Introduce the random variables K_0, \ldots, K_{n-1} to be defined later. We can write

$$\Pr \left(\min_{0 \leq t < n} (\text{risk}(H_t) + c_{\delta/2}(\text{risk}(H_t),t)) \geq \min_{0 \leq t < n} K_t \right)$$

$$\leq \Pr \left(\min_{0 \leq t < n} f_t(\mu_{t,n}) \geq \min_{0 \leq t < n} K_t \right) \leq \sum_{t=0}^{n-1} \Pr (f_t(\mu_{t,n}) \geq K_t) .$$

Now, for each $t = 0, \ldots, n - 1$, define $K_t = f_t \left(M_{t,n} + \frac{36 A}{n-t} + \frac{2}{\delta} \sqrt{A} \frac{M_{t,n} A}{n-t} \right)$. Then (10) and the monotonicity of f_0, \ldots, f_{n-1} allow us to obtain

$$\Pr \left(\min_{0 \leq t < n} (\text{risk}(H_t) + c_{\delta/2}(\text{risk}(H_t),t)) \geq \min_{0 \leq t < n} K_t \right)$$

$$\leq \sum_{t=0}^{n-1} \Pr (f_t(\mu_{t,n}) \geq f_t \left(M_{t,n} + \frac{36 A}{n-t} + \frac{2}{\delta} \sqrt{A} \frac{M_{t,n} A}{n-t} \right))$$

$$= \sum_{t=0}^{n-1} \Pr (\mu_{t,n} \geq M_{t,n} + \frac{36 A}{n-t} + \frac{2}{\delta} \sqrt{A} \frac{M_{t,n} A}{n-t}) \leq \delta/2 .$$

Combining with (9) concludes the proof.

4 Conclusions and current research issues

We have shown tail risk bounds for specific hypotheses selected from the ensemble generated by the run of an arbitrary on-line algorithm. Proposition 2, our simplest bound, is proven via an easy application of Bernstein’s maximal inequality for martingales, a quite basic result in probability theory. The analysis of Theorem 4 is also centered on the same martingale inequality. An open problem is to simplify this analysis, possibly obtaining a more readable bound. Also, the bound shown in Theorem 4 contains In terms. We do not know whether these logarithmic terms can be improved to $\ln(M_{n,n})$, similarly to Proposition 2. A further open problem is to prove lower bounds, even in the special case when $n M_n$ is bounded by a constant.

References