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Abstract

The Octopus arm is a highly versatile and complex limb. How the Octo-
pus controls such a hyper-redundant arm (not to mention eight of them!)
is as yet unknown. Robotic arms based on the same mechanical prin-
ciples may render present day robotic arms obsolete. In this paper, we
tackle this control problem using an online reinforcement learning al-
gorithm, based on a Bayesian approach to policy evaluation known as
Gaussian process temporal difference (GPTD) learning. Our substitute
for the real arm is a computer simulation of a 2-dimensional model of
an Octopus arm. Even with the simplifications inherent to this model,
the state space we face is a high-dimensional one. We apply a GPTD-
based algorithm to this domain, and demonstrate its operation on several
learning tasks of varying degrees of difficulty.

1 Introduction

The Octopus arm is one of the most sophisticated and fascinating appendages found in
nature. It is an exceptionally flexible organ, with a remarkable repertoire of motion. In
contrast to skeleton-based vertebrate and present-day robotic limbs, the Octopus arm lacks
a rigid skeleton and has virtually infinitely many degrees of freedom. As a result, this arm is
highly hyper-redundant – it is capable of stretching, contracting, folding over itself several
times, rotating along its axis at any point, and following the contours of almost any object.
These properties allow the Octopus to exhibit feats requiring agility, precision and force.
For instance, it is well documented that Octopuses are able to pry open a clam or remove
the plug off a glass jar, to gain access to its contents [1].

The basic mechanism underlying the flexibility of the Octopus arm (as well as of other
organs, such as the elephant trunk and vertebrate tongues) is the muscular hydrostat [2].
Muscular hydrostats are organs capable of exerting force and producing motion with the
sole use of muscles. The muscles serve in the dual roles of generating the forces and
maintaining the structural rigidity of the appendage. This is possible due to a constant
volume constraint, which arises from the fact that muscle tissue is incompressible. Proper
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use of this constraint allows muscle contractions in one direction to generate forces acting
in perpendicular directions.

Due to their unique properties, understanding the principles governing the movement and
control of the Octopus arm and other muscular hydrostats is of great interest to both phys-
iologists and robotics engineers. Recent physiological and behavioral studies produced
some interesting insights to the way the Octopus plans and controls its movements. Gut-
freund et al. [3] investigated the reaching movement of an Octopus arm and showed that
the motion is performed by a stereotypical forward propagation of a bend point along the
arm. Yekutieli et al. [4] propose that the complex behavioral movements of the Octopus
are composed from a limited number of ”motion primitives”, which are spatio-temporally
combined to produce the arm’s motion.

Although physical implementations of robotic arms based on the same principles are not
yet available, recent progress in the technology of “artificial muscles” using electroactive
polymers [5] may allow the construction of such arms in the near future. Needless to say,
even a single such arm poses a formidable control challenge, which does not appear to be
amenable to conventional control theoretic or robotics methodology. In this paper we pro-
pose a learning approach for tackling this problem. Specifically, we formulate the task of
bringing some part of the arm into a goal region as a reinforcement learning (RL) problem.
We then proceed to solve this problem using Gaussian process temporal difference learning
(GPTD) algorithms [6, 7, 8].

2 The Domain

Our experimental test-bed is a finite-elements computer simulation of a planar variant of the
Octopus arm, described in [9, 4]. This model is based on a decomposition of the arm into
quadrilateral compartments, and the constant muscular volume constraint mentioned above
is translated into a constant area constraint on each compartment. Muscles are modeled
as dampened springs and the mass of each compartment is concentrated in point masses
located at its corners1. Although this is a rather crude approximation of the real arm, even
for a modest 10-segment model there are already 88 continuous state variables2, making
this a rather high dimensional learning problem. Figure 1 illustrates this model.

Since our model is 2–dimensional, all force vectors lie on thex − y plane, and the arm’s
motion is planar. This limitation is due mainly to the high computational cost of the full
3–dimensional calculations for any arm of reasonable size. There are four types of forces
acting on the arm: 1) The internal forces generated by the arm’s muscles, 2) the vertical
forces caused by the influence of gravity and the arm’s buoyancy in the medium in which it
is immersed (typically sea water), 3) drag forces produced by the arm’s motion through this
medium, and 4) internal pressure-induced forces responsible for maintaining the constant
volume of each compartment. The use of simulation allows us to easily investigate different
operating scenarios, such as zero or low gravity scenarios, different media, such as water,
air or vacuum, and different muscle models. In this study, we used a simple linear model
for the muscles. The force applied by a muscle at any given timet is

F (t) =
(

k0 + (kmax − k0)A(t)
)(

ℓ(t) − ℓrest

)

+ c
dℓ(t)

dt
.

1For the purpose of computing volumes, masses, friction and muscle strength, the arm is effec-
tively defined in three dimensions. However, no forces or motion are allowed in the third dimension.
We also ignore the suckers located along the ventral side of the arm, and treat the arm as if it were
symmetric with respect to reflection along its long axis. Finally, we comment that this model is
restricted to modeling the mechanics of the arm and does not attempt to model its nervous system.

210 segments result in 22 point masses, each being described by 4 state variables – thex andy
coordinates and their respective first time-derivatives.
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Figure 1: AnN compartment simulated Octopus arm. Each constant area compartmentCi

is defined by its surrounding 2 longitudinal muscles (ventral and dorsal) and 2 transverse
muscles. Circles mark the2N + 2 point masses in which the arm’s mass is distributed. In
the bottom right one compartment is magnified with additional detail.

This equation describes a dampened spring with a controllable spring constant. The
spring’s length at timet is ℓ(t), its resting length, at which it does not apply any force
is ℓrest.3 The spring’s stiffness is controlled by the activation variableA(t) ∈ [0, 1]. Thus,
when the activation is zero, and the contraction is isometric (with zero velocity), the relaxed
muscle exhibits a baseline passive stiffnessk0. In a fully activated isometric contraction
the spring constant becomeskmax. The second term is a dampening, energy dissipating
term, which is proportional to the rate of change in the spring’s length, and (withc > 0) is
directed to resist that change. This is a very simple muscle model, which has been chosen
mainly due to its low computational cost, and the relative ease of computing the energy
expended by the muscle (why this is useful will become apparent in the sequel). More
complex muscle models can be easily incorporated into the simulator, but may result in
higher computational overhead. For additional details on the modeling of the other forces
and on the derivation of the equations of motion, refer to [4].

3 The Learning Algorithms

As mentioned above, we formulate the problem of controlling our Octopus arm as a RL
problem. We are therefore required to define a Markov decision process (MDP), consisting
of state and action spaces, a reward function and state transition dynamics. The states in
our model are the Cartesian coordinates of the point masses and their first time-derivatives.
A finite (and relatively small) number of actions are defined by specifying, for each action,
a set of activations for the arm’s muscles. The actions used in this study are depicted
in Figure 2. Given the arm’s current state and the chosen action, we use the simulator
to compute the arm’s state after a small fixed time interval. Throughout this interval the
activations remain fixed, until a new action is chosen for the next interval. The reward is
defined as−1 for non-goal states, and 10 for goal states. This encourages the controller
to find policies that bring the arm to the goal as quickly as possible. In addition, in order
to encourage smoothness and economy in the arm’s movements, we subtract an energy
penalty term from these rewards. This term is proportional to the total energy expended
by all muscles during each action interval. Training is performed in an episodic manner:
Upon reaching a goal, the current episode terminates and the arm is placed in a new initial
position to begin a new episode. If a goal is not reached by some fixed amount of time, the

3It is assumed that at all timesℓ(t) ≥ ℓrest. This is meant to ensure that our muscles can only
apply force by contracting, as real muscles do. This can be assured by endowing the compartments
with sufficiently high volumes, or equivalently, by settingℓrest sufficiently low.



episode terminates regardless.

Action # 1 Action # 2 Action # 3

Action # 4 Action # 5 Action # 6

Figure 2: The actions used in the fixed-base experiments. Linethickness is proportional to
activation intensity. For the rotating base experiment, these actions were augmented with
versions of actions 1, 2, 4 and 5 that include clockwise and anti-clockwise torques applied
to the arm’s base.

The RL algorithms implemented in this study belong to the Policy Iteration family of al-
gorithms [10]. Such algorithms require an algorithmic component for estimating the mean
sum of (possibly discounted) future rewards collected along trajectories, as a function of
the trajectory’s initial state, also known as thevalue function. The best known RL algo-
rithms for performing this task aretemporal differencealgorithms. Since the state space
of our problem is very large, some form of function approximation must be used to repre-
sent the value estimator. Temporal difference methods, such as TD(λ) and LSTD(λ), are
provably convergent when used with linearly parametrized function approximation archi-
tectures [10]. Used this way, they require the user to define a fixed set of basis functions,
which are then linearly combined to approximate the value function. These basis functions
must be defined over the entire state space, or at least over the subset of states that might
be reached during learning. When local basis functions are used (e.g., RBFs or tile codes
[11]), this inevitably means an exponential explosion of the number of basis functions with
the dimensionality of the state space. Nonparametric GPTD learning algorithms4 [8], offer
an alternative to the conventional parametric approach. The idea is to define a nonparamet-
ric statistical generative model connecting the hidden values and the observed rewards, and
a prior distribution over value functions. The GPTD modeling assumptions are that both
the prior and the observation-noise distributions are Gaussian, and that the model equa-
tions relating values and rewards have a special linear form. During or following a learning
session, in which a sequence of states and rewards are observed, Bayes’ rule may be used
to compute the posterior distribution over value functions, conditioned on the observed re-
ward sequence. Due to the GPTD model assumptions, this distribution is also Gaussian,
and is derivable in closed form. The benefits of using (nonparametric) GPTD methods are
that 1) the resulting value estimates are generally not constrained to lie in the span of any
predetermined set of basis functions, 2) no resources are wasted on unvisited state and ac-
tion space regions, and 3) rather than the point estimates provided by other methods, GPTD
methods provide complete probability distributions over value functions.

In [6, 7, 8] it was shown how the computation of the posterior value GP moments can
be performed sequentially and online. This is done by a employing a forward selection
mechanism, which is aimed at attaining a sparse approximation of the posterior moments,
under a constraint on the resulting error. The input samples (states, or state-action pairs)
used in this approximation are stored in adictionary, the final size of which is often a good
indicator of the problem’s complexity. Since nonparametric GPTD algorithms belong to the
family of kernel machines, they require the user to define a kernel function, which encodes
her prior knowledge and beliefs concerning similarities and correlations in the domain at
hand. More specifically, the kernel functionk(·, ·) defines theprior covarianceof the value
process. Namely, for two arbitrary statesx andx

′, Cov[V (x), V (x′)] = k(x,x′) (see [8]
for details). In this study we experimented with several kernel functions, however, in this

4GPTD models can also be defined parametrically, see [8].



paper we will describe results obtained using a third degree polynomial kernel, defined
by k(x,x′) =

(

x
⊤
x
′ + 1

)3

. It is well known that this kernel induces a feature space of
monomials of degree 3 or less [12]. For our 88 dimensional input space, this feature space
is spanned by a basis consisting of

(

91

3

)

= 121,485 linearly independent monomials.

We experimented with two types of policy-iteration based algorithms. The first was op-
timistic policy iteration (OPI), in which, in any given time-step, the current GPTD value
estimator is used to evaluate the successor states resulting from each one of the actions
available at the current state. Since, given an action, the dynamics are deterministic, we
used the simulation to determine the identity of successor states. An action is then cho-
sen according to a semi-greedy selection rule (more on this below). A more disciplined
approach is provided by apaired actor-critic algorithm. Here, two independent GPTD
estimators are maintained. The first is used to determine the policy, again, by some semi-
greedy action selection rule, while its parameters remain fixed. In the meantime, the second
GPTD estimator is used to evaluate the stationary policy determined by the first. After the
second GPTD estimator is deemed sufficiently accurate, as indicated by the GPTD value
variance estimate, the roles are reversed. This is repeated as many times as required, until
no significant improvement in policies is observed.

Although the latter algorithm, being an instance of approximate policy iteration, has a
better theoretical grounding [10], in practice it was observed that the GPTD-based OPI
worked significantly faster in this domain. In the experiments reported in the next section
we therefore used the latter. For additional details and experiments refer to [13]. One final
wrinkle concerns the selection of the initial state in a new episode. Since plausible arm
configurations cannot be attained by randomly drawing 88 state variable from some simple
distribution, a more involved mechanism for setting the initial state in each episode has to
be defined. The method we chose is tightly connected to the GPTD mode of operation: At
the end of each episode, 10 random states were drawn from the GPTD dictionary. From
these, the state with the highest posterior value variance estimate was selected as the initial
state of the next episode. This is a form ofactive learning, which is made possible by
employing GPTD, and that is applicable to general episodic RL problems.

4 Experiments

The experiments described in this section are aimed at demonstrating the applicability of
GPTD-based algorithms to large-scale RL problems, such as our Octopus arm. In these
experiments we used the simulated 10-compartment arm described in Section 2. The set
of goal states consisted of a circular region located somewhere within the potential reach
of the arm (recall that the arm has no fixed length). The action set depends on the task, as
described in Figure 2. Training episode duration was set to 4 seconds, and the time interval
between action decisions was 0.4 seconds. This allowed a maximum of 10 learning steps
per trial. The discount factor was set to 1.

The exploration policy used was the ubiquitousε-greedy policy: The greedy action (i.e. the
one for which the sum of the reward and the successor state’s estimated value is the highest)
is chosen with probability1 − ε, and with probabilityε a random action is drawn from a
uniform distribution over all other actions. The value ofε is reduced during learning, until
the policy converges to the greedy one. In our implementation, in each episode,ε was
dependent on the number of successful episodes experienced up to that point. The general
form of this relation isε = ε0N 1

2

/(N 1

2

+Ngoals), whereNgoals is the number of successful
episodes,ε0 is the initial value ofε andN 1

2

is the number of successful episodes required
to reduceε to ε0/2.

In order to evaluate the quality of learned solutions, 100 initial arm configurations were cre-



Figure 3: Examples of initial states for the rotating-base experiments (left) and the fixed-
base experiments (right). Starting states also include velocities, which are not shown.

ated. This was done by starting a simulation from some fixed arm configuration, perform-
ing a long sequence of random actions, and sampling states randomly from the resulting
trajectory. Some examples of such initial states are depicted in Figure 3. During learning,
following each training episode, the GPTD-learned parameters were recorded on file. Each
set of GPTD parameters defines a value estimator, and therefore also a greedy policy with
respect to the posterior value mean. Each such policy was evaluated by using it, starting
from each of the 100 initial test states. For each starting state, we recorded whether or not
a goal state was reached within the episode’s time limit (4 seconds), and the duration of the
episode (successful episodes terminate when a goal state is reached). These two measures
of performance were averaged over the 100 starting states and plotted against the episode
index, resulting in two corresponding learning curves for each experiment5.

We started with a simple task in which reaching the goal is quite easy. Any point of the
arm entering the goal circle was considered as a success. The arm’s base was fixed and the
gravity constant was set to zero, corresponding to a scenario in which the arm moves on
a horizontal frictionless plane. In the second experiment the task was made a little more
difficult. The goal was moved further away from the base of the arm. Moreover, gravity
was set to its natural level, of9.8 m

s2 , with the motion of the arm now restricted to a vertical
plane. The learning curves corresponding to these two experiments are shown in Figure 4.
A success rate of 100% was reached after 10 and 20 episodes, respectively. In both cases,
even after a success rate of 100% is attained, the mean time-to-goal keeps improving. The
final dictionaries contained about 200 and 350 states, respectively.

In our next two experiments, the arm had to reach a goal located so that it cannot be reached
unless the base of the arm is allowed to rotate. We added base-rotating actions to the
basic actions used in the previous experiments (see Figure 2 for an explanation). Allowing
a rotating base significantly increases the size of the action set, as well the size of the
reachable state space, making the learning task considerably more difficult. To make things
even more difficult, we rewarded the arm only if it reached the goal with its tip, i.e. the
two point-masses at the end of the arm. In the first experiment in this series, gravity was
switched on. A 99% success rate was attained after 270 trials, with a final dictionary size of

5It is worth noting that this evaluation procedure requires by far more time than the actual learning,
since each point in the graphs shown below requires us to perform 100 simulation runs. Whereas
learning can be performed almost in real-time (depending on dictionary size), computing the statistics
for a single learning run may take a day, or more.



Figure 4: Success rate (solid) and mean time to goal (dashed) for a fixed-base arm in zero
gravity (left), and with gravity (right). 100% success was reached after 10 and 20 trials,
respectively. The insets illustrate one starting position and the location of the goal regions,
in each case.

about 600 states. In the second experiment gravity was switched off, but a circular region
of obstacle states was placed between the arm’s base and the goal circle. If any part of the
arm touched the obstacle, the episode immediately terminated with a negative reward of -2.
Here, the success rate peaked at 40% after around 1000 episodes, and remained roughly
constant thereafter. It should be taken into consideration that at least some of the 100 test
starting states are so close to the obstacle that, regardless of the action taken, the arm cannot
avoid hitting the obstacle. The learning curves are presented in Figure 5.

Figure 5: Success rate (solid) and mean time to goal (dashed) for a rotating-base arm with
gravity switched on (left), and with gravity switched off but with an obstacle blocking the
direct path to the goal (right). The arm has to rotate its base in order to reach the goal in
either case (see insets). Positive reward was given only for arm-tip contact, any contact
with the obstacle terminated the episode with a penalty. A 99% success rate was attained
after 270 episodes for the first task, whereas for the second task success rate reached 40%.

Video movies showing the arm in various scenarios are available at
www.cs.ualberta.ca/∼yaki/movies/.

5 Discussion

Up to now, GPTD based RL algorithms have only been tested on low dimensional problem
domains. Although kernel methods have handled high-dimensional data, such as handwrit-



ten digits, remarkably well in supervised learning domains,the applicability of the kernel-
based GPTD approach to high dimensional RL problems has remained an open question.
The results presented in this paper are, in our view, a clear indication that GPTD meth-
ods are indeed scalable, and should be considered seriously as a possible solution method
by practitioners facing large-scale RL problems. Further work on the theory and prac-
tice of GPTD methods is called for. Standard techniques for model selection and tuning
of hyper-parameters can be incorporated straightforwardly into GPTD algorithms. Value
iteration-based variants, i.e. “GPQ-learning”, would provide yet another useful set of tools.

The Octopus arm domain is of independent interest, both to physiologists and robotics
engineers. The fact that reasonable controllers for such a complex arm can be learned from
trial and error, in a relatively short time, should not be understated. Further work in this
direction should be aimed at extending the Octopus arm simulation to a full 3-dimensional
model, as well as applying our RL algorithms to real robotic arms based on the muscular
hydrostat principle, when these become available.
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