Silicon Growth Cones Map Silicon Retina

Brian Taba and Kwabena Boahen*
Department of Bioengineering
University of Pennsylvania
Philadelphia, PA 19104
{btaba,boahen}@seas.upenn.edu

Abstract

We demonstrate the first fully hardware implementation of retinotopic self-organization, from photon transduction to neural map formation. A silicon retina transduces patterned illumination into correlated spike trains that drive a population of silicon growth cones to automatically wire a topographic mapping by migrating toward sources of a diffusible guidance cue that is released by postsynaptic spikes. We varied the pattern of illumination to steer growth cones projected by different retinal ganglion cell types to self-organize segregated or coordinated retinotopic maps.

1 Introduction

Engineers have long admired the brain’s ability to effortlessly adapt to novel situations without instruction, and sought to endow digital computers with a similar capacity for unsupervised self-organization. One prominent example is Kohonen’s self-organizing map [1], which achieved popularity by distilling neurophysiological insights into a simple set of mathematical equations. Although these algorithms are readily simulated in software, previous hardware implementations have required high precision components that are expensive in chip area (e.g. [2, 3]). By contrast, neurobiological systems can self-organize components possessing remarkably heterogeneous properties. To pursue this biological robustness against component mismatch, we designed circuits that mimic neurophysiological function down to the subcellular level. In this paper, we demonstrate topographic refinement of connections between a silicon retina and the first neuromorphic self-organizing map chip, previously reported in [5], which is based on axon migration in the developing brain.

During development, neurons wire themselves into their mature circuits by extending axonal and dendritic precursors called neurites. Each neurite is tipped by a motile sensory structure called a growth cone that guides the elongating neurite based on local chemical cues. Growth cones move by continually sprouting and retracting finger-like extensions called filopodia whose dynamics can be biased by diffusible ligands in an activity-dependent manner [4]. Based on these observations, we designed and fabricated the Neurtrope1 chip to implement a population of silicon growth cones [5]. We interfaced Neu-

*www.neuroengineering.upenn.edu/boahen
rotrope1 directly to a spiking silicon retina to illustrate its applicability to larger neuromorphic systems.

This paper is organized as follows. In Section 2, we present an algorithm for axon migration under the guidance of a diffusible chemical whose release and uptake is gated by activity. In Section 3, we describe our hardware implementation of this algorithm. In Section 4, we examine the Neurotrope1 system’s performance on a topographic refinement task when driven by spike trains generated by a silicon retina in response to several types of illumination stimuli.

2 Neurotropic axon guidance

We model the self-organization of connections between two layers of neurons (Fig. 1). Cells in the source layer innervate cells in the target layer with excitatory axons that are tipped by motile growth cones. Growth cones tow their axons within the target layer as directed by a diffusible guidance factor called neurotropin that they bind from the local extracellular environment. Neurotropin is released by postsynaptically active target cell bodies and bound by presynaptically active growth cones, so the retrograde transfer of neurotropin from a target cell to a source cell measures the temporal coincidence of their spike activities. Growth cones move to maximize their neurotropic uptake, a Hebbian-like learning rule that causes cells that fire at the same time to wire to the same place. To prevent the population of growth cones from attempting to trivially maximize their uptake by all exciting the same target cell, we impose a synaptic density constraint that requires a migrating growth cone to displace any other growth cone occupying its path.

To state the model more formally, source cell bodies occupy nodes of a regular two-dimensional (2D) lattice embedded in the source layer, while growth cones and target cell bodies occupy nodes on separate 2D lattices that are interleaved in the target layer. We index nodes by their positions in their respective layers, using Greek letters for source layer positions (e.g., $\alpha \in \mathbb{Z}^2$) and Roman letters for target layer positions (e.g., $x, c \in \mathbb{Z}^2$).

Each source cell α fires spikes at a rate $a_{SC}(\alpha)$ and conveys this presynaptic activity down an axon that elaborates an excitatory arbor in the target layer centered on $c(\alpha)$. In principle, every branch of this arbor is tipped by its own motile growth cone, but to facilitate efficient
Figure 2: a. Neurotrope1 system. Spike communication is by address-events (AER). b. Neurotrope1 cell mosaic. The extracellular medium (grey) is laid out as a monolithic honeycomb lattice. Growth cones (GC) occupy nodes of this lattice and extend filopodia to the adjacent nodes. Neurotropin receptors (black) are located at the tip of each filopodium and at the growth cone body. Target cells (N) occupy nodes of an interleaved triangular lattice. c. Detail of chip layout.

Hardware implementation, we abstract the collection of branch growth cones into a single central growth cone that tows the arbor’s trunk around the target layer, dragging the rest of the arbor with it. The arbor overlaps nearby target cells with a branch density \(A(x - c(\alpha)) \) that diminishes with distance \(\|x - c(\alpha)\| \) from the arbor center. The postsynaptic activity \(a_{TC}(x) \) of target cell \(x \) is proportional to the linear sum of its excitation.

\[
a_{TC}(x) = \sum_\alpha a_{SC}(\alpha) A(x - c(\alpha))
\]

(1)

Postsynaptically active target cell bodies release neurotropin, which spreads laterally until consumed by constitutive decay processes. The neurotropin \(n(x') \) present at target site \(x' \) is assembled from contributions from all active release sites. The contribution of each target cell \(x \) is proportional to its postsynaptic activity and weighted by a spreading kernel \(N(x - x') \) that is a decreasing function of its distance \(\|x - x'\| \) from the measurement site \(x' \).

\[
n(x') = \sum_x a_{TC}(x) N(x - x')
\]

(2)

A presynaptically active growth cone located at \(c(\alpha) \) computes the direction of the local neurotropin gradient by identifying the adjacent lattice node \(c'(\alpha) \in C(c(\alpha)) \) with the most neurotropin, where \(C(c(\alpha)) \) includes \(c(\alpha) \) and its nearest neighbors.

\[
c'(\alpha) = \arg \max_{x' \in C(c(\alpha))} n(x')
\]

(3)

Once the growth cone has identified \(c'(\alpha) \), it swaps positions with the growth cone already located at \(c'(\alpha) \), increasing its own neurotropic uptake while preserving a constant synaptic density. Growth cones compute position updates independently, at a rate \(\lambda(\alpha) \propto a_{SC}(\alpha) \max_y \in C(c(\alpha)) n(x') \). Updates are executed asynchronously, in order of their arrival.

Software simulation of a similar set of equations generates self-organized feature maps when driven by appropriately correlated source cell activity [6]. Here, we illustrate topographic map formation in hardware using correlated spike trains generated by a silicon retina.
Figure 3: Virtual axon remapping.

a. Cell bodies tag their spikes with their own source layer addresses, which the forward lookup table translates into target layer destinations.

b. Axon updates are computed by growth cones, which decode their own target layer addresses through the reverse lookup table to obtain the source layer addresses of their cell bodies that identify their entries in the forward lookup table.

c. Growth cones move by modifying their entries in the forward and reverse lookup tables to reroute their spikes to updated locations.

3 Neurotrope1 system

Our hardware implementation splits the model into three stages: the source layer, the target layer, and the intervening axons (Fig. 2a). Any population of spiking neurons can act as a source layer; in this paper we employ the silicon retina of [7]. The target layer is implemented by a full custom VLSI chip that interleaves a 48×20 array of growth cone circuits with a 24×20 array of target cell circuits. There is also a spreading network that represents the intervening medium for propagating neurotropin. The Neurotrope1 chip was fabricated by MOSIS using the TSMC 0.35µm process and has an area of 11.5 mm2. Connections are specified as entries in a pair of lookup tables, stored in an off-chip RAM, that are updated by a Ubicom ip2022 microcontroller as instructed by the Neurotrope1 chip. The ip2022 also controls a USB link that allows a computer to write and read the contents of the RAM. Subsection 3.1 explains how updates are computed by the Neurotrope1 chip and Subsection 3.2 describes the procedure for executing these updates.

3.1 Axon updates

Axon updates are computed by the Neurotrope1 chip using the transistor circuits described in [5]. Here, we provide a brief description. The Neurotrope1 chip represents neurotropin as charge spreading through a monolithic transistor channel laid out as a honeycomb lattice. Each growth cone occupies one node of this lattice and extends filopodia to the three adjacent nodes, expressing neurotropin receptors at all four locations (Fig. 2b-c). When a growth cone receives a presynaptic spike, its receptor circuits tap charge from all four nodes onto separate capacitors. The first capacitor voltage to integrate to a threshold resets all of the growth cone’s capacitors and transmits a request off-chip to update the growth cone’s position by swapping locations with the growth cone currently occupying the winning node.

3.2 Address-event remapping

Chips in the Neurotrope1 system exchange spikes encoded in the address-event representation (AER) [8], an asynchronous communication protocol that merges spike trains from every cell on the same chip onto a single shared data link instead of requiring a dedicated wire for each connection. Each spike is tagged with the address of its originating cell for transmission off-chip. Between chips, spikes are routed through a forward lookup table that translates their original source layer addresses into their destined target layer addresses.
4 Retinotopic self-organization

We programmed the growth cone population to self-organize retinotopic maps by driving them with correlated spike trains generated by the silicon retina. The silicon retina translates patterned illumination in real-time into spike trains that are fed into the Neurotrope1 chip as presynaptic input from different retinal ganglion cell (RGC) types. An ON-center RGC is excited by a spot of light in the center of its receptive field and inhibited by light in the surrounding annulus, while an OFF-center RGC responds analogously to the absence of light. There is an ON-center and an OFF-center RGC located at every retinal coordinate.

To generate appropriately correlated RGC spike trains, we illuminated the silicon retina with various mixtures of light and dark spot stimuli. Each spot stimulus was presented against a uniformly grey background for 100 ms and covered a contiguous cluster of RGCs centered on a pseudorandomly selected position in the retinal plane, eliciting overlapping bursts of spikes whose coactivity established a spatially restricted presynaptic correlation kernel containing enough information to instruct topographic ordering [9]. Strongly driven RGCs could fire at nearly 1 kHz, which was the highest mean rate at which the silicon retina could still be tuned to roughly balance ON- and OFF-center RGC excitability. We tracked the evolution of the growth cone population by reading out the contents of the lookup table every five minutes, a sampling interval selected to include enough patch stimuli to allow each of the 48×20 possible patches to be activated on average at least once per sample.

We first induced retinotopic self-organization within a single RGC cell type by illuminating the silicon retina with a sequence of randomly centered spots of light presented against a grey background, selectively activating only ON-center RGCs. Each of the 960 growth
Figure 5: Segregation by cell type under separate light and dark spot stimulation. Top: ON-center; bottom: OFF-center. a. Silicon retina image of representative spot stimulus. Light or dark intensity denotes relative ON- or OFF-center RGC output rate. b. Spike rates for ON-center (grey) and OFF-center (black) RGCs in column \(x \) of a cross-section of a representative spot stimulus. c. Target layer color maps of RGC growth cones at sample \(n = 0 \). Black indicates the absence of a growth cone projected by an RGC of this cell type. Other colors as in Fig. 4. d. Target layer color maps at \(n = 310 \). e. Order parameter evolution for ON-center (grey) and OFF-center (black) RGCs.
Figure 6: Coordinated retinotopy under center-surround stimulation. Top: ON-center; bottom: OFF-center. a. Silicon retina image of a representative center-surround stimulus. Light or dark intensity denotes relative ON- or OFF-center RGC output rate. b. Spike rates for ON-center (grey) and OFF-center (black) RGCs in column x of a cross-section of a representative center-surround stimulus. c. Target layer color maps of RGC growth cones for sample $n = 0$. Colors as in Fig. 5. d. Target layer color maps at $n = 335$. e. Order parameter evolution for ON-center (grey) and OFF-center (black) RGCs.

ior of nominally identical circuits on the Neurotrope1 chip and the silicon retina. In the silicon retina, the wide variance of the RGC output rates [7] limits both the convergence speed and the final topographic level achieved by the spot-driven growth cone population. Growth cones move faster when stimulated at higher rates, but elevating the mean output rate of the RGC population allows more excitable RGCs to fire spontaneously at a sustained rate, swamping growth cone-specific guidance signals with stimulus-independent postsynaptic activity that globally attracts all growth cones. The mean RGC output rate must remain low enough to suppress these spontaneous distractors, limiting convergence speed. Variance in the output rates of neighboring RGCs also distorts the shape of the spot stimulus, eroding the fidelity of the correlation-encoded instructions received by the growth cones.

Variability in the Neurotrope1 chip further limits topographic convergence. Migrating growth cones are directed by the local neurotropin landscape, which forms an image of recent presynaptic activity correlations as filtered through the postsynaptic activation of the target cell population. This image is distorted by variations between the properties of individual target cell and neurotropin circuits that are introduced during fabrication. In particular, poor power distribution on the Neurotrope1 chip creates a systematic gradient in target cell excitability that warps a growth cone’s impression of the relative coactivity of its neighbors, attracting it preferentially toward the more excitable target cells on the right side of the array.

5 Conclusions

In this paper, we demonstrated a completely neuromorphic implementation of retinotopic self-organization. This is the first time every stage of the process has been implemented entirely in hardware, from photon transduction through neural map formation. The only comparable system was described in [11], which processed silicon retina data offline using a software model of neurotrophic guidance running on a workstation. Our system computes results in real time at low power, two prerequisites for autonomous mobile applications.

The novel infrastructure developed to implement virtual axon migration allows silicon growth cones to directly interface with an existing family of AER-compliant devices,
enabling a host of multimodal neuromorphic self-organizing applications. In particular, the silicon retina’s ability to translate arbitrary visual stimuli into growth cone-compatible spike trains in real-time opens the door to more ambitious experiments such as using natural video correlations to automatically wire more complicated visual feature maps.

Our faithful adherence to cellular level details yields an algorithm that is well suited to physical implementation. In contrast to all previous self-organizing map chips (e.g. [2, 3]), which implemented a global winner-take-all function to induce competition, our silicon growth cones compute their own updates using purely local information about the neurotropin gradient, a cellular approach that scales effortlessly to larger populations. Performance might be improved by supplementing our purely morphogenetic model with additional physiologically-inspired mechanisms to prune outliers and consolidate well-placed growth cones into permanent synapses.

Acknowledgments

We would like to thank J. Arthur for developing a USB system to facilitate data collection. This project was funded by the David and Lucille Packard Foundation and the NSF/BITS program (EIA0130822).

References