
Predicting Weather Using a Genetic Memory 455 

Predicting Weather Using a Genetic Memory: a Combi­
nation of Kanerva's Sparse Distributed Memory with 

Holland's Genetic Algorithms 

David Rogers 
Research Institute for Advanced Computer Science 

MS 230-5, NASA Ames Research Center 
Moffett Field, CA 94035 

ABSTRACT 

Kanerva's sparse distributed memory (SDM) is an associative-memo­
ry model based on the mathematical properties of high-dimensional 
binary address spaces. Holland's genetic algorithms are a search tech­
nique for high-dimensional spaces inspired by evolutionary processes 
of DNA. "Genetic Memory" is a hybrid of the above two systems, 
in which the memory uses a genetic algorithm to dynamically recon­
figure its physical storage locations to reflect correlations between 
the stored addresses and data. For example, when presented with 
raw weather station data, the Genetic Memory discovers specific fea­
tures in the weather data which correlate well with upcoming rain, 
and reconfigures the memory to utilize this information effectively. 
This architecture is designed to maximize the ability of the system 
to scale-up to handle real-world problems. 

INTRODUCTION 
The future success of neural networks depends on an ability to "scale-up" from 
small networks and low-dimensional toy problems to networks of thousands or mil­
lions of nodes and high-dimensional real-world problems. (The dimensionality of a 
problem refers to the number of variables needed to describe the problem domain.) 
Unless neural networks are shown to be scalable to real-world problems, they will 
likely remain restricted to a few specialized applications. 

Scaling-up adds two types of computational demands to a system. First, there is a 
linear increase in computational demand proportional to the increased number of vari­
ables. Second, there is a greater, nonlinear increase in computational demand due to 



456 Rogers 

the number of interactions that can occur between the variables. This latter effect is 
primarily responsible for the difficulties encountered in scaling-up many systems. 
In general, it is difficult to scale-up a system unless it is specifically designed to 
function well in high-dimensional domains. 

Two systems designed to function well in high-dimensional domains are Kanerva' s 
sparse distributed memory (Kanerva, 1988) and Holland's genetic algorithms 
(Holland, 1986). I hypothesized that a hybrid of these two systems would preserve 
this ability to operate well in high-dimensional environments, and offer grater func­
tionality than either individually. I call this hybrid Genetic Memory. To test its 
capabilities, I applied it to the problem of forecasting rain from local weather data. 

Kanerva's sparse distributed memory (SDM) is an associative-memory model based 
on the mathematical properties of high-dimensional binary address spaces. It can be 
represented as a three-layer neural-network with an extremely large nwnber of 
nodes (I ,000,000+) in the middle layer. In its standard formulation, the connec­
tions between the input layer and the hidden layer (the input representation used by 
the system) are flXed, and learning is done by changing the values of the connections 
between the hidden layer and the output layer. 

Holland's genetic algorithms are a search technique for high-dimensional spaces in­
spired by evolutionary processes of DNA. Members of a set of binary strings com­
petes for the opportunity to recombine. Recombination is done by selecting two 
"successful" members of the population to be the parents. A new string is created 
by splicing together pieces of each parent. Finally, the new string is placed into the 
set, and some "unsuccessful" older string removed. 

"Genetic Memory" is a hybrid of the above two systems. In this hybrid, a genetic al­
gorithm is used to reconfigure the connections between the input layer and the hid­
den layer. The connections between the hidden layer and the output layer are 
changed using the standard method for a sparse distributed memory. The "success" 
of an input representation is determined by how well it reflects correlations be­
tween addresses and data, using my previously presented work on statistical predic­
tion (Rogers, 1988). Thus, we have two separate learning algorithms in the two lev­
els. The memory uses the genetic algorithm to dynamically reconfigure its input 
representation to better reflect correlations between collections of input variables 
and the stored data. 

I applied this Genetic Memory architecture to the problem of predicting rain given 
only local weather features such as the air pressure, the cloud cover, the month, the 
temperature, etc. The weather data contained 15 features, sampled every 4-hours 
over a 2O-year period on the Australian coast. I coded each state into a 256-bit ad­
dress, and stored at that address a single bit which denoted whether it rained in the 4 
hours following that weather state. I allowed the genetic algorithm to reconfigure 
the memory while it scanned the file of weather states. 

The success of this procedure was measured in two ways. First, once the training 
was completed, the Genetic Memory was better at predicting rain than was the stan­
dard sparse distributed memory. Second, I had access to the input representations 
discovered by the Genetic Memory and could view the specific combinations of fea­
tures that predicted rain. Thus, unlike many neural networks, the Genetic Memory 
allows the user to inspect the internal representations it discovers during training. 



Predicting Weather Using a Genetic Memory 457 

Reference Address 

01010101101 

~ ~ 
1101100111 

1010101010 

0000011110 

0011011001 

1011101100 

0010101111 

1101101101 

0100000110 

0110101001 

1011010110 

1100010111 

1 1 1 1 1 100 1 1 

Location 
Addresses 

Radius 

o 
Dist 

Input Data 

I 0 I 01 0111 11 11 0 I tI 0 11 I 
Select "" + + + + + , 
·_;1 II 

• -1 -1 -1 1 1 1 -1 1 -1 1 

• 
• O· 

• 0 • • 
• 0 • --1 -1 -1 1 1 1 -1 1 -1 1 • 1· ... _--

o -2 0 2 2 0 0 0 0 0 

-1 -1 -1 1 1 1 -1 1 -1 1 

, , , , + + + + + 'L 
Sums 1-31 -s 1-31 sis 13 I -31 31 -31 3 I 

Threshold at 0 + + + + + + + + + + 
Output Data I 0 I 0 I 0 I tI tI tI 0 I 1 I 0 11 I 

Figure 1: Structure of a Sparse Distributed Memory 

SPARSE DISTRmUTED MEMORY 

Data 
Counters 

Sparse distributed memory can be best illustrated as a variant of random-access mem­
ory (RAM). The structure of a twelve-location SDM with ten-bit addresses and 
ten-bit data is shown in figure 1. 

A memory location is a row in this figure. The location addresses are set to random 
addresses. The data counters are initialized to zero. All operations begin with ad­
dressing the memory; this entails fmding the Hamming distance between the refer­
ence address and each of the location addresses. If this distance is less than or equal 
to the Hamming radius. the select-vector entry is set to 1. and that location is 
termed selected. The ensemble of such selected locations is called the selected set. 
Selection is noted in the figure as non-gray rows. A radius is chosen so that only a 
small percentage of the memory locations are selected for a given reference address. 

When writing to the memory. all selected counters beneath elements of the input da­
ta equal to 1 are incremented. and all selected counters beneath elements of the input 
data equal to 0 are decremented. This completes a write operation. When reading 
from the memory. the selected data counters are summed columnwise into the regis­
ter swns. If the value of a sum is greater than or equal to zero. we set the corre­
sponding bit in the output data to 1; otherwise. we set the bit in the output data to 
O. (When reading. the contents of the input data are ignored.) 



458 Rogers 

This example makes clear that a datum is distributed over the data counters of the se­
lected locations when writing. and that the datum is reconstructed during reading by 
averaging the sums of these counters. However, depending on what additional data 
were written into some of the selected locations, and depending on how these data 
correlate with the original data. the reconstruction may contain noise. 

The SDM model can also be described as a fully-connected three-layer feed-forward 
neural network. In this model. the location addresses are the weights between the 
input layer and the hidden units. and the data counters are the weights between the 
hidden units and the output layer. Note that the number of hidden-layer nodes (at 
least 1,000 and possibly up to 1,000,(00) is much larger than is commonly used for 
artificial neural networks. It is unclear how well standard algorithms. such as back­
propagation, would perform with such a large number of units in the hidden layer. 

HOLLAND'S GENETIC ALGORITHMS 
Genetic Algorithms are a search technique for high-dimensional spaces inspired by 
the evolutionary processes of DNA. The domain of a genetic algorithm is a popula­
tion of rued-length binary strings and a fitness function, which is a method for evalu­
ating the fitness of each of the members. We use this fitness function to select two 
highly-ranked members for recombination. and one lowly-ranked member for re­
placement (The selection may be done either absolutely. with the best and worst 
members always being selected. or probabilisticly. with the members being chosen 
proportional to their fitness scores.) 

The member selected as bad is removed from the population. The two members se­
lected as good are then recombined to create a new member to take its place in the 
population. In effect, the genetic algorithm is a search over a high-dimensional 
space for strings which are highly-rated by the fitness function. 

The process used to create new members of the population is called crossover. In a 
crossover. we align the two good candidates end-to-end and segment them at one or 
more crossover-points. We then create a new string by starting the transcription of 
bits at one of the parent strings, and switching the transcription to the other parent 
at the crossover-points. This new string is placed into the population. taking the 
place of the poorly-rated member. 

11 •• I'~IOllllll •••• First parent 

1101101101: 111:11".110 ... Second parent 

~ ~ ~ 
New member 

Figure 2: Crossover of two binary strings 

By running the genetic algorithm over the population many times, the population 
"evolves" towards members which are rated more fit by our fitness function. 



Weights changed using 
perceptron rule 

-.. 
Weights changed using 
Genetic Algorithm 

Predicting Weather Using a Genetic Memory 459 

Output Layer 

Hidden Unit Layer 

Input Layer 

Figure 3: Structure of a Genetic Memory 

Holland has a �l�I�I�a�U�I�t�~�l�I�I�a�U�l�:�a�t� pruuI Uta&. �g�~�l�1�~�U�l�:� atgunuul1s uastAI UI1 Ule crossover 
procedure are an extremely efficient method for searching a high-dimensional space. 

GENETIC MEMORY 
Genetic Memory is a hybrid of Kanerva's Sparse Distributed Memory and Holland's 
Genetic Algorithms. In this hybrid, the location addresses of the SDM are not held 
constant; rather, a Genetic Algorithm is used to move them to more advantageous 
positions in the address space. If we view SDM as a neural net, this hybrid uses a ge­
netic algorithm to change the weights in the connections between the input layer and 
the hidden unit layer, while the connections between the hidden unit layer and the 
output layer at changed using the standard method for a SDM. 

Most other work which combined neural networks and genetic algorithms kept mul­
tiple networks; the Genetic Algorithm was used to recombine the more successful 
of these networks to create new entire networks. 

In a Genetic Memory there is a single network with different algorithms changing 
the weights in different layers. Thus, a Genetic Memory incorporates the Genetic 
Algorithm directly into the operation of a single network. 

AUSTRALIAN WEATHER DATA 
The weather data was collected at a single site on the Australian coast. A sample 
was taken every 4 hours for 25 years; the me contains over 58,000 weather samples 

The file contained 15 distinct features, including year, month, day of the month, 
time of day, pressure, dry bulb temperature, wet bulb temperature, dew point, wind 
speed, wind direction, cloud cover, and whether it rained in the past four hours. 

For this work, I coded each weather sample into a 256-bit word. Each weather sam­
ple was coded into a 256-bit binary address, giving each feature a 16-bit field in that 
address. The feature values were coarse-coded into a simple thennometer-style 
code. For example, figure 4 shows the code used for month. 

PROCEDURE FOR WEATHER PREDICTION 
In the standard SDM model, the locations addresses are held constant. In a Genetic 
Memory, the location addresses are reconfigured using a Genetic Algorithm. 












