
Learning the k in k-means

Greg Hamerly, Charles Elkan
{ghamerly,elkan}@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, California 92093-0114

Abstract

When clustering a dataset, the right numberk of clusters to use is often
not obvious, and choosingk automatically is a hard algorithmic prob-
lem. In this paper we present an improved algorithm for learningk while
clustering. The G-means algorithm is based on a statistical test for the
hypothesis that a subset of data follows a Gaussian distribution. G-means
runsk-means with increasingk in a hierarchical fashion until the test ac-
cepts the hypothesis that the data assigned to eachk-means center are
Gaussian. Two key advantages are that the hypothesis test does not limit
the covariance of the data and does not compute a full covariance matrix.
Additionally, G-means only requires one intuitive parameter, the stand-
ard statistical significance levelα. We present results from experiments
showing that the algorithm works well, and better than a recent method
based on the BIC penalty for model complexity. In these experiments,
we show that the BIC is ineffective as a scoring function, since it does
not penalize strongly enough the model’s complexity.

1 Introduction and related work

Clustering algorithms are useful tools for data mining, compression, probability density es-
timation, and many other important tasks. However, most clustering algorithms require the
user to specify the number of clusters (calledk), and it is not always clear what is the best
value fork. Figure 1 shows examples wherek has been improperly chosen. Choosingk is
often anad hocdecision based on prior knowledge, assumptions, and practical experience.
Choosingk is made more difficult when the data has many dimensions, even when clusters
are well-separated.

Center-based clustering algorithms (in particulark-means and Gaussian expectation-
maximization) usually assume that each cluster adheres to a unimodal distribution, such
as Gaussian. With these methods, only one center should be used to model each subset
of data that follows a unimodal distribution. If multiple centers are used to describe data
drawn from one mode, the centers are a needlessly complex description of the data, and in
fact the multiple centers capture the truth about the subset less well than one center.

In this paper we present a simple algorithm called G-means that discovers an appropriate
k using a statistical test for deciding whether to split ak-means center into two centers.
We describe examples and present experimental results that show that the new algorithm



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Figure 1: Two clusterings wherek was improperly chosen. Dark crosses arek-means
centers. On the left, there are too few centers; five should be used. On the right, too many
centers are used; one center is sufficient for representing the data. In general, one center
should be used to represent one Gaussian cluster.

is successful. This technique is useful and applicable for many clustering algorithms other
thank-means, but here we consider only thek-means algorithm for simplicity.

Several algorithms have been proposed previously to determinek automatically. Like our
method, most previous methods are wrappers aroundk-means or some other clustering
algorithm for fixedk. Wrapper methods use splitting and/or merging rules for centers to
increase or decreasek as the algorithm proceeds.

Pelleg and Moore [14] proposed a regularization framework for learningk, which they call
X-means. The algorithm searches over many values ofk and scores each clustering model
using the so-called Bayesian Information Criterion [10]:BIC(C|X) = L(X|C)− p

2 log n
whereL(X|C) is the log-likelihood of the datasetX according to modelC, p = k(d + 1)
is the number of parameters in the modelC with dimensionalityd andk cluster centers,
andn is the number of points in the dataset.X-means chooses the model with the best BIC
score on the data. Aside from the BIC, other scoring functions are also available.

Bischof et al.[1] use a minimum description length (MDL) framework, where the descrip-
tion length is a measure of how well the data are fit by the model. Their algorithm starts
with a large value fork and removes centers (reducesk) whenever that choice reduces
the description length. Between steps of reducingk, they use thek-means algorithm to
optimize the model fit to the data.

With hierarchical clustering algorithms, other methods may be employed to determine the
best number of clusters. One is to build a merging tree (“dendrogram”) of the data based
on a cluster distance metric, and search for areas of the tree that are stable with respect
to inter- and intra-cluster distances [9, Section 5.1]. This method of estimatingk is best
applied with domain-specific knowledge and human intuition.

2 The Gaussian-means (G-means) algorithm

The G-means algorithm starts with a small number ofk-means centers, and grows the
number of centers. Each iteration of the algorithm splits into two those centers whose data
appear not to come from a Gaussian distribution. Between each round of splitting, we run
k-means on the entire dataset and all the centers to refine the current solution. We can
initialize with justk = 1, or we can choose some larger value ofk if we have some prior
knowledge about the range ofk.

G-means repeatedly makes decisions based on a statistical test for the data assigned to each
center. If the data currently assigned to ak-means center appear to be Gaussian, then we
want to represent that data with only one center. However, if the same data do not appear



Algorithm 1 G-means(X, α)
1: Let C bethe initial set of centers (usuallyC ← {x̄}).
2: C ← kmeans(C,X).
3: Let {xi|class(xi) = j} be the set of datapoints assigned to centercj .
4: Use a statistical test to detect if each{xi|class(xi) = j} follow a Gaussian distribution

(at confidence levelα).
5: If the data look Gaussian, keepcj . Otherwise replacecj with two centers.
6: Repeat from step 2 until no more centers are added.

to be Gaussian, then we want to use multiple centers to model the data properly. The
algorithmwill run k-means multiple times (up tok times when findingk centers), so the
time complexity is at mostO(k) times that ofk-means.

Thek-means algorithm implicitly assumes that the datapoints in each cluster are spherically
distributed around the center. Less restrictively, the Gaussian expectation-maximization
algorithm assumes that the datapoints in each cluster have a multidimensional Gaussian
distribution with a covariance matrix that may or may not be fixed, or shared. The Gaussian
distribution test that we present below are valid for either covariance matrix assumption.
The test also accounts for the number of datapointsn tested by incorporatingn in the
calculation of the critical value of the test (see Equation 2). This prevents the G-means
algorithm from making bad decisions about clusters with few datapoints.

2.1 Testing clusters for Gaussian fit

To specify the G-means algorithm fully we need a test to detect whether the data assigned
to a center are sampled from a Gaussian. The alternative hypotheses are

• H0: The data around the center are sampled from a Gaussian.

• H1: The data around the center are not sampled from a Gaussian.

If we accept the null hypothesisH0, then we believe that the one center is sufficient to
model its data, and we should not split the cluster into two sub-clusters. If we rejectH0

and acceptH1, then we want to split the cluster.

The test we use is based on the Anderson-Darling statistic. This one-dimensional test has
been shown empirically to be the most powerful normality test that is based on the empirical
cumulative distribution function (ECDF). Given a list of valuesxi that have been converted
to mean 0 and variance 1, letx(i) be theith ordered value. Letzi = F (x(i)), whereF is
theN(0, 1) cumulative distribution function. Then the statistic is

A2(Z) = − 1
n

n∑
i=1

(2i− 1) [log(zi) + log(1− zn+1−i)]− n (1)

Stephens [17] showed that for the case whereµ andσ are estimated from the data (as in
clustering), we must correct the statistic according to

A2
∗(Z) = A2(Z)(1 + 4/n− 25/(n2)) (2)

Given a subset of dataX in d dimensions that belongs to centerc, the hypothesis test
proceeds as follows:

1. Choose a significance levelα for the test.



2. Initialize two centers, called “children” ofc. See the text for good ways to do this.

3. Runk-means on these two centers inX. This can be run to completion, or to some
early stopping point if desired. Letc1, c2 be the child centers chosen byk-means.

4. Letv = c1 − c2 be ad-dimensional vector that connects the two centers. This is
the direction thatk-means believes to be important for clustering. Then project
X ontov: x′i = 〈xi, v〉/||v||2. X ′ is a 1-dimensional representation of the data
projected ontov. TransformX ′ so that it has mean 0 and variance 1.

5. Let zi = F (x′(i)). If A2
∗(Z) is in the range of non-critical values at confidence

levelα, then acceptH0, keep the original center, and discard{c1, c2}. Otherwise,
rejectH0 and keep{c1, c2} in place of the original center.

A primary contribution of this work is simplifying the test for Gaussian fit by projecting
the data to one dimension where the test is simple to apply. The authors of [5] also use
this approach for online dimensionality reduction during clustering. The one-dimensional
representation of the data allows us to consider only the data along the direction thatk-
means has found to be important for separating the data. This is related to the problem
of projection pursuit [7], where herek-means searches for a direction in which the data
appears non-Gaussian.

We must choose the significance level of the test,α, which is the desired probability of
making a Type I error (i.e. incorrectly rejectingH0). It is appropriate to use a Bonferroni
adjustment to reduce the chance of making Type I errors over multiple tests. For example, if
we want a 0.01 chance of making a Type I error in 100 tests, we should apply a Bonferroni
adjustment to make each test useα = 0.01/100 = 0.0001. To find k final centers the
G-means algorithm makesk statistical tests, so the Bonferroni correction does not need to
be extreme. In our tests, we always useα = 0.0001.

We consider two ways to initialize the two child centers. Both approaches initialize with
c ± m, wherec is a center andm is chosen. The first method choosesm as a random
d-dimensional vector such that||m|| is small compared to the distortion of the data. A
second method finds the main principal components of the data (having eigenvalueλ),
and choosesm = s

√
2λ/π. This deterministic method places the two centers in their

expected locations underH0. The principal component calculations requireO(nd2 + d3)
time andO(d2) space, but since we only want the main principal component, we can use
fast methods like the power method, which takes time that is at most linear in the ratio of
the two largest eigenvalues [4]. In this paper we use principal-component-based splitting.

2.2 An example

Figure 2 shows a run of the G-means algorithm on a synthetic dataset with two true clusters
and 1000 points, usingα = 0.0001. The critical value for the Anderson-Darling test is
1.8692 for this confidence level. Starting with one center, after one iteration of G-means,
we have 2 centers and theA2

∗ statistic is 38.103. This is much larger than the critical value,
so we rejectH0 and accept this split. On the next iteration, we split each new center and
repeat the statistical test. TheA2

∗ values for the two splits are 0.386 and 0.496, both of
which are well below the critical value. Therefore we acceptH0 for both tests, and discard
these splits. Thus G-means gives a final answer ofk = 2.

2.3 Statistical power

Figure 3 shows the power of the Anderson-Darling test, as compared to the BIC. Lower is
better for both plots. We run 1000 tests for each data point plotted for both plots. In the left
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Figure 2: An example of running G-means for three iterations on a 2-dimensional dataset
with two true clusters and 1000 points. Starting with one center (left plot), G-means splits
into two centers (middle). The test for normality is significant, so G-means rejectsH0 and
keeps the split. After splitting each center again (right), the test values arenot significant,
so G-means acceptsH0 for both tests and does not accept these splits. The middle plot is
the G-means answer. See the text for further details.
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Figure 3: A comparison of the power of the Anderson-Darling test versus the BIC. For
theAD test we fix the significance level (α= 0.0001), while the BIC’s significance level
depends onn. The left plot shows the probability of incorrectly splitting (Type I error) one
true 2-dcluster that is 5% elliptical. The right plot shows the probability of incorrectlynot
splitting two true clusters separated by5σ (Type II error). Both plots are functions ofn.
Both plots show that the BIC overfits (splits clusters) whenn is small.

plot, for each test we generaten datapoints from a single true Gaussian distribution, and
then plot the frequency with which BIC and G-means will choosek = 2 rather thank = 1
(i.e. commit a Type I error). BIC tends to overfit by choosing too many centers when the
data is not strictly spherical, while G-means does not. This is consistent with the tests of
real-world data in the next section. While G-means commits more Type II errors whenn is
small, this prevents it from overfitting the data.

The BIC can be considered a likelihood ratio test, but with a significance level that cannot
be fixed. The significance level instead varies depending onn and∆k (the change in the
number of model parameters between two models). Asn or ∆k decrease, the significance
level increases (the BIC becomes weaker as a statistical test) [10]. Figure 3 shows this
effect for varyingn. In [11] the authors show that penalty-based methods require problem-
specific tuning and don’t generalize as well as other methods, such as cross validation.

3 Experiments

Table 1 shows the results from running G-means andX-means on many large synthetic. On
synthetic datasets with spherically distributed clusters, G-means andX-means do equally



Table 1: Results for many synthetic datasets. We report distortion relative to the optimum
distortionfor the correct clustering (closer to one is better), and time is reported relative to
k-means run with the correctk. For BIC, larger values are better, but it is clear that finding
the correct clustering does not always coincide with finding a larger BIC. Items with a star
are whereX-means always chose the largest number of centers we allowed.

dataset d method k found distortion(×optimal) BIC(×104) time(×k-means)
synthetic 2 G-means 9.1±9.9 0.89±0.23 -0.19±2.70 13.2
k=5 X-means 18.1±3.2 0.37±0.12 0.70±0.93 2.8
synthetic 2 G-means 20.1±0.6 0.99±0.01 0.21±0.18 2.1
k=20 X-means 70.5±11.6 9.45±28.02 14.83±3.50 1.2
synthetic 2 G-means 80.0±0.2 1.00±0.01 1.84±0.12 2.2
k=80 X-means 171.7±23.7 48.49±70.04 40.16±6.59 1.8
synthetic 8 G-means 5.0±0.0 1.00±0.00 -0.74±0.16 4.6
k=5 X-means *20.0±0.0 0.47±0.03 -2.28±0.20 11.0
synthetic 8 G-means 20.0±0.1 0.99±0.00 -0.18±0.17 2.6
k=20 X-means *80.0±0.0 0.47±0.01 14.36±0.21 4.0
synthetic 8 G-means 80.2±0.5 0.99±0.00 1.45±0.20 2.9
k=80 X-means 229.2±36.8 0.57±0.06 52.28±9.26 6.5
synthetic 32 G-means 5.0±0.0 1.00±0.00 -3.36±0.21 4.4
k=5 X-means *20.0±0.0 0.76±0.00 -27.92±0.22 29.9
synthetic 32 G-means 20.0±0.0 1.00±0.00 -2.73±0.22 2.3
k=20 X-means *80.0±0.0 0.76±0.01 -11.13±0.23 21.2
synthetic 32 G-means 80.0±0.0 1.00±0.00 -1.10±0.16 2.8
k=80 X-means 171.5±10.9 0.84±0.01 11.78±2.74 53.3
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Figure 4: 2-dsyntheticdataset with 5 true clusters. On the left, G-means correctly chooses
5 centers and deals well with non-spherical data. On the right, the BIC causesX-means to
overfit the data, choosing 20 unevenly distributed clusters.

well at finding the correctk and maximizing the BIC statistic, so we don’t show these
results here. Most real-world data is not spherical, however.

The synthetic datasets used here each have 5000 datapoints ind = 2/8/32 dimensions.
The trueks are 5, 20, and 80. For each synthetic dataset type, we generate 30 datasets with
the true center means chosen uniformly randomly from the unit hypercube, and choosingσ
so that no two clusters are closer than 3σapart. Each cluster is also given a transformation
to make it non-spherical, by multiplying the data by a randomly chosen scaling and rotation
matrix. We run G-means starting with one center. We allowX-means to search between 2
and4k centers (where herek is the true number of clusters).

The G-means algorithm clearly does better at finding the correctk on non-spherical data. Its
results are closer to the true distortions and the correctks. The BIC statistic thatX-means
uses has been formulated to maximize the likelihood for spherically-distributed data. Thus
it overestimates the number of true clusters in non-spherical data. This is especially evident
when the number of points per cluster is small, as in datasets with 80 true clusters.



5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

Cluster

Di
git

10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

9

Cluster

Di
git

Figure 5: NIST and Pendigits datasets: correspondence between each digit (row) and each
cluster(column) found by G-means. G-means did not have the labels, yet it found mean-
ingful clusters corresponding with the labels.

Because of this overestimation,X-means often hits our limit of4k centers. Figure 4 shows
an example of overfitting on a dataset with 5 true clusters.X-means choosesk = 20 while
G-means finds all 5 true cluster centers. Also of note is thatX-means does not distribute
centers evenly among clusters; some clusters receive one center, but others receive many.

G-means runs faster thanX-means for 8 and 32 dimensions, which we expect, since the
kd-tree structures which makeX-means fast in low dimensions take time exponential in
d, making them slow for more than 8 to 12 dimensions. All our code is written in Matlab;
X-means is written in C.

3.1 Discovering true clusters in labeled data

We tested these algorithms on two real-world datasets for handwritten digit recognition:
the NIST dataset [12] and the Pendigits dataset [2]. The goal is to cluster the data without
knowledge of the labels and measure how well the clustering captures the true labels. Both
datasets have 10 true classes (digits 0-9). NIST has 60000 training examples and 784
dimensions (28×28 pixels). We use 6000 randomly chosen examples and we reduce the
dimension to 50 by random projection (following [3]). The Pendigits dataset has 7984
examples and 16 dimensions; we did not change the data in any way.

We cluster each dataset with G-means andX-means, and measure performance by com-
paring the cluster labelsLc with the true labelsLt. We define thepartition quality(PQ) as

pq =
∑kt

i=1

∑kc

j=1 p(i, j)2
/ ∑kt

i=1 p(i)2 wherekt is the true number of classes, andkc is

the number of clusters found by the algorithm. This metric is maximized whenLc induces
the same partition of the data asLt; in other words, when all points in each cluster have the
same true label, and the estimatedk is the truek. Thep(i, j) term is the frequency-based
probability that a datapoint will be labeledi by Lt andj by Lc. This quality is normalized
by the sum of true probabilities, squared. This statistic is related to the Rand statistic for
comparing partitions [8].

For the NIST dataset, G-means finds 31 clusters in 30 seconds with a PQ score of 0.177.
X-means finds 715 clusters in 4149 seconds, and 369 of these clusters contain only one
point, indicating an overestimation problem with the BIC.X-means receives a PQ score
of 0.024. For the Pendigits dataset, G-means finds 69 clusters in 30 seconds, with a PQ
score of 0.196;X-means finds 235 clusters in 287 seconds, with a PQ score of 0.057.
Figure 5 shows Hinton diagrams of the G-means clusterings of both datasets, showing that
G-means succeeds at identifying the true clusters concisely, without aid of the labels. The
confusions between different digits in the NIST dataset (seen in the off-diagonal elements)
are common for other researchers using more sophisticated techniques, see [3].



4 Discussion and conclusions

We have introduced the new G-means algorithm for learningk based on a statistical test
for determining whether datapoints are a random sample from a Gaussian distribution with
arbitrary dimension and covariance matrix. The splitting uses dimension reduction and a
powerful test for Gaussian fitness. G-means uses this statistical test as a wrapper around
k-means to discover the number of clusters automatically. The only parameter supplied
to the algorithm is the significance level of the statistical test, which can easily be set in
a standard way. The G-means algorithm takes linear time and space (plus the cost of the
splitting heuristic and test) in the number of datapoints and dimension, sincek-means is
itself linear in time and space. Empirically, the G-means algorithm works well at finding
the correct number of clusters and the locations of genuine cluster centers, and we have
shown it works well in moderately high dimensions.

Clustering in high dimensions has been an open problem for many years. Recent research
has shown that it may be preferable to use dimensionality reduction techniques before clus-
tering, and then use a low-dimensional clustering algorithm such ask-means, rather than
clustering in the high dimension directly. In [3] the author shows that using a simple,
inexpensive linear projection preserves many of the properties of data (such as cluster dis-
tances), while making it easier to find the clusters. Thus there is a need for good-quality,
fast clustering algorithms for low-dimensional data. Our work is a step in this direction.

Additionally, recent image segmentation algorithms such as normalized cut [16, 13] are
based on eigenvector computations on distance matrices. These “spectral” clustering al-
gorithms still usek-means as a post-processing step to find the actual segmentation and
they requirek to be specified. Thus we expect G-means will be useful in combination with
spectral clustering.
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