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Abstract

We propose a novel method of dimensionality reduction for supervised
learning. Given a regression or classification problem in which we wish
to predict a variable Y from an explanatory vector X , we treat the prob-
lem of dimensionality reduction as that of finding a low-dimensional “ef-
fective subspace” of X which retains the statistical relationship between
X and Y . We show that this problem can be formulated in terms of
conditional independence. To turn this formulation into an optimization
problem, we characterize the notion of conditional independence using
covariance operators on reproducing kernel Hilbert spaces; this allows us
to derive a contrast function for estimation of the effective subspace. Un-
like many conventional methods, the proposed method requires neither
assumptions on the marginal distribution of X , nor a parametric model
of the conditional distribution of Y .

1 Introduction

Many statistical learning problems involve some form of dimensionality reduction. The
goal may be one of feature selection, in which we aim to find linear or nonlinear combina-
tions of the original set of variables, or one of variable selection, in which we wish to select
a subset of variables from the original set. Motivations for such dimensionality reduction
include providing a simplified explanation and visualization for a human, suppressing noise
so as to make a better prediction or decision, or reducing the computational burden.

We study dimensionality reduction for supervised learning, in which the data consists of
(X,Y ) pairs, where X is an m-dimensional explanatory variable and Y is an �-dimensional
response. The variable Y may be either continuous or discrete. We refer to these problems
generically as “regression,” which indicates our focus on the conditional probability density
pY |X(y|x). Thus, our framework includes classification problems, where Y is discrete.

We wish to solve a problem of feature selection in which the features are linear combi-
nations of the components of X . In particular, we assume that there is an r-dimensional
subspace S ⊂ R

m such that the following equality holds for all x and y:

pY |X(y|x) = pY |ΠSX(y|ΠSx), (1)

where ΠS is the orthogonal projection of R
m onto S. The subspace S is called the ef-

fective subspace for regression. Based on observations of (X,Y ) pairs, we wish to re-



cover a matrix whose columns span S. We approach the problem within a semiparamet-
ric statistical framework—we make no assumptions regarding the conditional distribution
pY |ΠSX(y|ΠSx) or the distribution pX(x) of X . Having found an effective subspace, we
may then proceed to build a parametric or nonparametric regression model on that sub-
space. Thus our approach is an explicit dimensionality reduction method for supervised
learning that does not require any particular form of regression model; it can be used as a
preprocessor for any supervised learner.

Most conventional approaches to dimensionality reduction make specific assumptions re-
garding the conditional distribution pY |ΠSX(y|ΠSx), the marginal distribution pX(x), or
both. For example, classical two-layer neural networks can be seen as attempting to es-
timate an effective subspace in their first layer, using a specific model for the regressor.
Similar comments apply to projection pursuit regression [1] and ACE [2], which assume
an additive model E[Y |X] = g1(βT

1 X) + · · · + gK(βT
KX). While canonical correlation

analysis (CCA) and partial least squares (PLS, [3]) can be used for dimensionality reduc-
tion in regression, they make a linearity assumption and place strong restrictions on the
allowed dimensionality. The line of research that is closest to our work is sliced inverse re-
gression (SIR, [4]) and related methods including principal Hessian directions (pHd, [5]).
SIR is a semiparametric method that can find effective subspaces, but only under strong
assumptions of ellipticity for the marginal distribution pX(x). pHd also places strong re-
strictions on pX(x). If these assumptions do not hold, there is no guarantee of finding the
effective subspace.

In this paper we present a novel semiparametric method for dimensionality reduction that
we refer to as Kernel Dimensionality Reduction (KDR). KDR is based on a particular class
of operators on reproducing kernel Hilbert spaces (RKHS, [6]). In distinction to algorithms
such as the support vector machine and kernel PCA [7, 8], KDR cannot be viewed as a “ker-
nelization” of an underlying linear algorithm. Rather, we relate dimensionality reduction
to conditional independence of variables, and use RKHSs to provide characterizations of
conditional independence and thereby design objective functions for optimization. This
builds on the earlier work of [9], who used RKHSs to characterize marginal independence
of variables. Our characterization of conditional independence is a significant extension,
requiring rather different mathematical tools—the covariance operators on RKHSs that we
present in Section 2.2.

2 Kernel method of dimensionality reduction for regression

2.1 Dimensionality reduction and conditional independence

The problem discussed in this paper is to find the effective subspace S defined by Eq. (1),
given an i.i.d. sample {(Xi, Yi)}n

i=1, sampled from the conditional probability Eq. (1) and
a marginal probability pX for X . The crux of the problem is that we have no a priori
knowledge of the regressor, and place no assumptions on the conditional probability pY |X
or the marginal probability pX .

We do not address the problem of choosing the dimensionality r in this paper—in practical
applications of KDR any of a variety of model selection methods such as cross-validation
can be reasonably considered. Rather our focus is on the problem of finding the effective
subspace for a given choice of dimensionality.

The notion of effective subspace can be formulated in terms of conditional independence.
Let Q = (B,C) be an m-dimensional orthogonal matrix such that the column vectors of
B span the subspace S (thus B is m × r and C is m × (m − r)), and define U = BT X
and V = CT X . Because Q is an orthogonal matrix, we have pX(x) = pU,V (u, v) and
pX,Y (x, y) = pU,V,Y (u, v, y). Thus, Eq. (1) is equivalent to

pY |U,V (y|u, v) = pY |U (y|u). (2)
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Figure 1: Graphical representation of dimensionality reduction for regression.

This shows that the effective subspace S is the one which makes Y and V conditionally
independent given U (see Figure 1).

Mutual information provides another viewpoint on the equivalence between conditional
independence and the effective subspace. It is well known that

I(Y,X) = I(Y,U) + EU

[
I(Y |U, V |U)

]
, (3)

where I(Z,W ) is the mutual information between Z and W . Because Eq. (1) implies
I(Y,X) = I(Y,U), the effective subspace S is characterized as the subspace which retains
the entire mutual information between X and Y , or equivalently, such that I(Y |U, V |U) =
0. This is again the conditional independence of Y and V given U .

2.2 Covariance operators on kernel Hilbert spaces and conditional independence

We use cross-covariance operators [10] on RKHSs to characterize the conditional inde-
pendence of random variables. Let (H, k) be a (real) reproducing kernel Hilbert space of
functions on a set Ω with a positive definite kernel k : Ω × Ω → R and an inner product
〈·, ·〉H. The most important aspect of a RKHS is the reproducing property:

〈f, k(·, x)〉H = f(x) for all x ∈ Ω and f ∈ H. (4)

In this paper we focus on the Gaussian kernel k(x1, x2) = exp
(−‖x1 − x2‖2/2σ2

)
.

Let (H1, k1) and (H2, k2) be RKHSs over measurable spaces (Ω1,B1) and (Ω2,B2), re-
spectively, with k1 and k2 measurable. For a random vector (X,Y ) on Ω1 × Ω2, the
cross-covariance operator ΣY X from H1 to H2 is defined by the relation

〈g,ΣY Xf〉H2 = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] (= Cov[f(X), g(Y )]) (5)

for all f ∈ H1 and g ∈ H2. Eq. (5) implies that the covariance of f(X) and g(Y ) is given
by the action of the linear operator ΣY X and the inner product. Under the assumption that
EX [k1(X,X)] and EY [k2(Y, Y )] are finite, by using Riesz’s representation theorem, it is
not difficult to see that a bounded operator ΣY X is uniquely defined by Eq. (5). We have
Σ∗

Y X = ΣXY , where A∗ denotes the adjoint of A. From Eq. (5), we see that ΣY X captures
all of the nonlinear correlations defined by the functions in HX and HY .

Cross-covariance operators provide a useful framework for discussing conditional proba-
bility and conditional independence, as shown by the following theorem and its corollary1:

Theorem 1. Let (H1, k1) and (H2, k2) be RKHSs on measurable spaces Ω1 and Ω2, re-
spectively, with k1 and k2 measurable, and (X,Y ) be a random vector on Ω1×Ω2. Assume
that EX [k1(X,X)] and EY [k2(Y, Y )] are finite, and for all g ∈ H2 the conditional expec-
tation EY |X [g(Y ) | X = ·] is an element of H1. Then, for all g ∈ H2 we have

ΣXXEY |X [g(Y ) | X = ·] = ΣXY g. (6)

1Full proofs of all theorems can be found in [11].



Corollary 2. Let Σ̃−1
XX be the right inverse of ΣXX on (KerΣXX)⊥. Under the same

assumptions as Theorem 1, we have, for all f ∈ (KerΣXX)⊥ and g ∈ H2,

〈f, Σ̃−1
XXΣXY g〉H1 = 〈f,EY |X [g(Y ) | X = ·]〉H1 . (7)

Sketch of the proof. ΣXY can be decomposed as ΣXY = Σ1/2
XXV Σ1/2

Y Y for a bounded oper-
ator V (Theorem 1, [10]). Thus, we see Σ̃−1

XXΣXY is well-defined, because RangeΣXY ⊂
RangeΣXX = (KerΣXX)⊥. Then, Eq. (7) is a direct consequence of Theorem 1.

Given that ΣXX is invertible, Eq. (7) implies

EY |X [g(Y ) | X = ·] = Σ−1
XXΣXY g for all g ∈ H2. (8)

This can be understood by analogy to the conditional expectation of Gaussian random
variables. If X and Y are Gaussian random variables, it is well-known that the conditional
expectation is given by EY |X [aT Y | X = x] = xT Σ−1

XXΣXY a for an arbitrary vector a,
where ΣXX and ΣXY are the variance-covariance matrices in the ordinary sense.

Using cross-covariance operators, we derive an objective function for characterizing con-
ditional independence. Let (H1, k1) and (H2, k2) be RKHSs on measurable spaces Ω1

and Ω2, respectively, with k1 and k2 measurable, and suppose we have random variables
U ∈ H1 and Y ∈ H2. We define the conditional covariance operator ΣY Y |U on H1 by

ΣY Y |U := ΣY Y − ΣY U Σ̃−1
UUΣUY . (9)

Corollary 2 easily yields the following result on the conditional covariance of variables:

Theorem 3. Assume that EX [k1(X,X)] and EY [k2(Y, Y )] are finite, and that
EY |X [f(Y )|X] is an element of H1 for all f ∈ H2. Then, for all f, g ∈ H2, we have

〈g,ΣY Y |Uf〉H2 = EY [f(Y )g(Y )] − EU

[
EY |U [f(Y )|U ]EY |U [g(Y )|U ]

]

= EU

[
CovY |U

[
f(Y ), g(Y ) | U

]]
. (10)

As in the case of Eq. (8), Eqs. (9) and (10) can be viewed as the analogs of the well-known
equality for Gaussian variables: Cov[aT Y, bT Y |U ] = aT (ΣY Y − ΣY UΣ−1

UUΣUY )b.

From Theorem 3, it is natural to use minimization of ΣY Y |U as a basis of a method for
finding the most informative U , which gives the least VarY |U [f(Y )|U ]. The following
definition is needed to justify this intuition. Let (Ω,B) be a measurable space, let (H, k) be
a RKHS over Ω with k measurable and bounded, and let M be the set of all the probability
measures on (Ω,B). The RKHS H is called probability-determining, if the map

M � P �→ (f �→ EX∼P [f(X)]) ∈ H∗ (11)

is one-to-one, where H∗ is the dual space of H. The following theorem can be proved
using a argument similar to that used in the proof of Theorem 2 in [9].

Theorem 4. For an arbitrary σ > 0, the RKHS with Gaussian kernel k(x, y) = exp(−‖x−
y‖2/2σ2) on R

m is probability-determining.

Recall that for two RKHSs H1 and H2 on Ω1 and Ω2, respectively, the direct product
H1⊗H2 is the RKHS on Ω1×Ω2 with the kernel k1k2 [6]. The relation between conditional
independence and the conditional covariance operator is given by the following theorem:

Theorem 5. Let (H11, k11), (H12, k12), and (H2, k2) be RKHSs on measurable spaces
Ω11, Ω12, and Ω2, respectively, with continuous and bounded kernels. Let (X,Y ) =
(U, V, Y ) be a random vector on Ω11 × Ω12 × Ω2, where X = (U, V ), and let H1 =
H11 ⊗ H12 be the direct product. It is assumed that EY |U [g(Y )|U = ·] ∈ H11 and
EY |X [g(Y )|X = ·] ∈ H1 for all g ∈ H2. Then, we have

ΣY Y |U ≥ ΣY Y |X , (12)



where the inequality refers to the order of self-adjoint operators. If further H2 is
probability-determining, in particular, for Gaussian kernels, we have the equivalence:

ΣY Y |X = ΣY Y |U ⇐⇒ Y ⊥⊥V | U. (13)

Sketch of the proof. Taking the expectation of the well-known equality VarY |U [g(Y )|U ] =
EV |U

[
VarY |U,V [g(Y )|U, V ]

]
+ VarV |U

[
EY |U,V [g(Y )|U, V ]

]
with respect to U , we ob-

tain EU

[
VarY |U [g(Y )|U ]

]−EX

[
VarY |X [g(Y )|X]

]
= EU

[
VarV |U [EY |X [g(Y )|X]]

] ≥ 0,
which implies Eq. (12). The equality holds iff EY |X [g(Y )|X] = EY |U [g(Y )|U ] for a.e. X .
Since H2 is probability-determining, this means PY |X = PY |U , that is, Y ⊥⊥V | U .

From Theorem 5, for probability-determining kernel spaces, the effective subspace S can
be characterized in terms of the solution to the following minimization problem:

min
S

ΣY Y |U , subject to U = ΠSX. (14)

2.3 Kernel generalized variance for dimensionality reduction

To derive a sampled-based objective function from Eq. (14) for a finite sample, we have to
estimate the conditional covariance operator with given data, and choose a specific way to
evaluate the size of self-adjoint operators. Hereafter, we consider only Gaussian kernels,
which are appropriate for both continuous and discrete variables.

For the estimation of the operator, we follow the procedure in [9] (see also [11] for further
details), and use the centralized Gram matrix [9, 8], which is defined as:

K̂Y =
(
In− 1

n1n1T
n

)
GY

(
In− 1

n1n1T
n

)
, K̂U =

(
In− 1

n1n1T
n

)
GU

(
In− 1

n1n1T
n

)
(15)

where 1n = (1, . . . , 1)T , (GY )ij = k1(Yi, Yj) is the Gram matrix of the samples of Y ,
and (GU )ij = k2(Ui, Uj) is given by the projection Ui = BT Xi. With a regularization
constant ε > 0, the empirical conditional covariance matrix Σ̂Y Y |U is then defined by

Σ̂Y Y |U := Σ̂Y Y − Σ̂Y U Σ̂−1
UU Σ̂UY = (K̂Y +εIn)2−K̂Y K̂U (K̂U +εIn)−2K̂UK̂Y . (16)

The size of Σ̂Y Y |U in the ordered set of positive definite matrices can be evaluated by its

determinant. Although there are other choices for measuring the size of Σ̂Y Y |U , such as
the trace and the largest eigenvalue, we focus on the determinant in this paper. Using the

Schur decomposition, det(A − BC−1BT ) = det
(

A B
BT C

)
/detC, we have

det Σ̂Y Y |U = det Σ̂[Y U ][Y U ]/det Σ̂UU , (17)

where Σ̂[Y U ][Y U ] is defined by Σ̂[Y U ][Y U ] =
(

Σ̂Y Y Σ̂Y U

Σ̂UY Σ̂UU

)
=

(
(K̂Y +εIn)2 K̂Y K̂U

K̂U K̂Y (K̂U+εIn)2

)
.

We symmetrize the objective function by dividing by the constant det Σ̂Y Y , which yields

min
B∈Rm×r

det Σ̂[Y U ][Y U ]

det Σ̂Y Y det Σ̂UU

, where U = BT X. (18)

We refer to this minimization problem with respect to the choice of subspace S or matrix
B as Kernel Dimensionality Reduction (KDR).

Eq. (18) has been termed the “kernel generalized variance” (KGV) by Bach and Jordan [9].
They used it as a contrast function for independent component analysis, in which the goal
is to minimize a mutual information. They showed that KGV is in fact an approximation
of the mutual information among the recovered sources around the factorized distributions.
In the current setting, on the other hand, our goal is to maximize the mutual information



SIR(10) SIR(15) SIR(20) SIR(25) pHd KDR
R(b1) 0.987 0.993 0.988 0.990 0.110 0.999
R(b2) 0.421 0.705 0.480 0.526 0.859 0.984

Table 1: Correlation coefficients. SIR(m) indicates the SIR method with m slices.

I(Y,U), and with an entirely different argument, we have shown that KGV is an appro-
priate objective function for the dimensionality reduction problem, and that minimizing
Eq. (18) can be viewed as maximizing the mutual information I(Y,U).
Given that the numerical task that must be solved in KDR is the same as the one to be
solved in kernel ICA, we can import all of the computational techniques developed in [9]
for minimizing KGV. In particular, the optimization routine that we use is gradient descent
with a line search, where we exploit incomplete Cholesky decomposition to reduce the
n× n matrices to low-rank approximations. To cope with local optima, we make use of an
annealing technique, in which the scale parameter σ for the Gaussian kernel is decreased
gradually during the iterations of optimization. For a larger σ, the contrast function has
fewer local optima, and the search becomes more accurate as σ is decreased.

3 Experimental results

We illustrate the effectiveness of the proposed KDR method through experiments, compar-
ing it with several conventional methods: SIR, pHd, CCA, and PLS.

The first data set is a synthesized one with 300 samples of 17 dimensional X and one
dimensional Y , which are generated by Y ∼ 0.9X1 + 0.2/(1 + X17) + Z, where Z ∼
N(0, 0.012) and X follows a uniform distribution on [0, 1]17. The effective subspace is
given by b1 = (1, 0, . . . , 0) and b2 = (0, . . . , 0, 1). We compare the KDR method with
SIR and pHd only—CCA and PLS cannot find a 2-dimensional subspace, because Y is one-
dimensional. To evaluate estimation accuracy, we use the multiple correlation coefficient
R(b) = maxβ∈S βT ΣXXb/(βT ΣXXβ · bT ΣXXb)1/2, which is used in [4]. As shown
in Table 1, KDR outperforms the others in finding the weak contribution of b2.

Next, we apply the KDR method to classification problems, for which many conventional
methods of dimensionality reduction are not suitable. In particular, SIR requires the dimen-
sionality of the effective subspace to be less than the number of classes, because SIR uses
the average of X in slices along the variable Y . CCA and PLS have a similar limitation
on the dimensionality of the effective subspace. Thus we compare the result of KDR only
with pHd, which is applicable to general binary classification problems.

We show the visualization capability of the dimensionality reduction methods for the Wine
dataset from the UCI repository to see how the projection onto a low-dimensional space re-
alizes an effective description of data. The Wine data consists of 178 samples with 13 vari-
ables and a label with three classes. Figure 2 shows the projection onto the 2-dimensional
subspace estimated by each method. KDR separates the data into three classes most com-
pletely. We can see that the data are nonlinearly separable in the two-dimensional space.

In the third experiment, we investigate how much information on the classification is pre-
served in the estimated subspace. After reducing the dimensionality, we use the support
vector machine (SVM) method to build a classifier in the reduced space, and compare its
accuracy with an SVM trained using the full-dimensional vector X . We use three data sets
from the UCI repository. Figure 3 shows the classification rates for the test set for sub-
spaces of various dimensionality. We can see that KDR yields good classification even in
low-dimensional subspaces, while pHd is much worse in small dimensionality. It is note-
worthy that in the Ionosphere data set the classifier in dimensions 5, 10, and 20 outperforms
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Figure 2: Projections of Wine data: ”+”, ”•”, and gray ”�” represent the three classes.

the classifier in the full-dimensional space. This is caused by suppressing noise irrelevant
to explain Y . These results show that KDR successfully finds an effective subspace which
preserves the class information even when the dimensionality is reduced significantly.

4 Extension to variable selection

The KDR method can be extended to variable selection, in which a subset of given ex-
planatory variables {X1, . . . , Xm} is selected. Extension of the KGV objective function
to variable selection is straightforward. We have only to compare the KGV values for all
the subspaces spanned by combinations of a fixed number of selected variables. We of
course do not avoid the combinatorial problem of variable selection; the total number of
combinations may be intractably large for a large number of explanatory variables m, and
greedy or random search procedures are needed.

We first apply this kernel method to the Boston Housing data (506 samples with 13 di-
mensional X), which has been used as a typical example of variable selection. We select
four variables that attain the smallest KGV value among all the combinations. The selected
variables are exactly the same as the ones selected by ACE [2]. Next, we apply the method
to the leukemia microarray data of 7129 dimensions ([12]). We select 50 effective genes
to classify two types of leukemia using 38 training samples. For optimization of the KGV
value, we use a greedy algorithm, in which new variables are selected one by one, and
subsequently a variant of genetic algorithm is used. Half of the 50 genes accord with 50
genes selected by [12]. With the genes selected by our method, the same classifier as that
used in [12] classifies correctly 32 of the 34 test samples, for which, with their 50 genes,
Golub et al. ([12]) report a result of classifying 29 of the 34 samples correctly.

5 Conclusion

We have presented KDR, a novel method of dimensionality reduction for supervised learn-
ing. One of the striking properties of this method is its generality. We do not place any
strong assumptions on either the conditional or the marginal distribution, in distinction to
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Figure 3: Classification accuracy of the SVM for test data after dimensionality reduction.

essentially all existing methods for dimensionality reduction in regression, including SIR,
pHd, CCA, and PPR. We have demonstrating promising empirical performance of KDR,
showing its practical utility in data visualization and feature selection for prediction. We
have also discussed an extension of KDR method to variable selection.

The theoretical basis of KDR lies in the nonparametric characterization of conditional inde-
pendence that we have presented in this paper. Extending earlier work on the kernel-based
characterization of marginal independence [9], we have shown that conditional indepen-
dence can be characterized in terms of covariance operators on a kernel Hilbert space.
While our focus has been on the problem of dimensionality reduction, it is also worth not-
ing that there are many possible other applications of this result. In particular, conditional
independence plays an important role in the structural definition of graphical models, and
our result may have implications for model selection and inference in graphical models.
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