
598 Le Cun, Denker and Solla

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Sol1a
AT&T Bell Laboratories, Holmdel, N. J. 07733

ABSTRACT

We have used information-theoretic ideas to derive a class of prac
tical and nearly optimal schemes for adapting the size of a neural
network. By removing unimportant weights from a network, sev
eral improvements can be expected: better generalization, fewer
training examples required, and improved speed of learning and/or
classification. The basic idea is to use second-derivative informa
tion to make a tradeoff between network complexity and training
set error. Experiments confirm the usefulness of the methods on a
real-world application.

1 INTRODUCTION

Most successful applications of neural network learning to real-world problems have
been achieved using highly structured networks of rather large size [for example
(Waibel, 1989; Le Cun et al., 1990a)]. As applications become more complex, the
networks will presumably become even larger and more structured. Design tools
and techniques for comparing different architectures and minimizing the network
size will be needed. More importantly, as the number of parameters in the systems
increases, overfitting problems may arise, with devastating effects on the general
ization performance. We introduce a new technique called Optimal Brain Damage
(OBD) for reducing the size of a learning network by selectively deleting weights.
We show that OBD can be used both as an automatic network minimization pro
cedure and as an interactive tool to suggest better architectures.

The basic idea of OBD is that it is possible to take a perfectly reasonable network,
delete half (or more) of the weights and wind up with a network that works just as
well, or better. It can be applied in situations where a complicated problem must

Optimal Brain Damage 599

be solved, and the system must make optimal use of a limited amount of training
data. It is known from theory (Denker et al., 1987; Baum and Haussler, 1989; Solla
et al., 1990) and experience (Le Cun, 1989) that, for a fixed amount of training
data, networks with too many weights do not generalize well. On the other hand.
networks with too few weights will not have enough power to represent the data
accurately. The best generalization is obtained by trading off the training error and
the network complexity.

One technique to reach this tradeoff is to minimize a cost function composed of two
terms: the ordinary training error, plus some measure of the network complexity.
Several such schemes have been proposed in the statistical inference literature [see
(Akaike, 1986; Rissanen, 1989; Vapnik, 1989) and references therein] as well as in
the NN literature (Rumelhart, 1988; Chauvin, 1989; Hanson and Pratt, 1989; Mozer
and Smolensky, 1989).

Various complexity measures have been proposed, including Vapnik-Chervonenkis
dimensionality (Vapnik and Chervonenkis, 1971) and description length (Rissanen,
1989) . A time-honored (albeit inexact) measure of complexity is simply the number
of non-zero free parameters, which is the measure we choose to use in this paper
[but see (Denker, Le Cun and Solla, 1990)]. Free parameters are used rather than
connections, since in constrained networks, several connections can be controlled by
a single parameter.

In most cases in the statistical inference literature, there is some a priori or heuristic
information that dictates the order in which parameters should be deleted; for
example, in a family of polynomials, a smoothness heuristic may require high-order
terms to be deleted first. In a neural network, however, it is not at all obvious in
which order the parameters should be deleted.

A simple strategy consists in deleting parameters with small "saliency", i.e. those
whose deletion will have the least effect on the training error. Other things be
ing equal, small-magnitude parameters will have the least saliency, so a reasonable
initial strategy is to train the network and delete small-magnitude parameters in
order. After deletion, the network should be retrained. Of course this procedure
can be iterated; in the limit it reduces to continuous weight-decay during training
(using disproportionately rapid decay of small-magnitude parameters). In fact, sev
eral network minimization schemes have been implemented using non-proportional
weight decay (Rumelhart, 1988; Chauvin, 1989; Hanson and Pratt, 1989), or "gat
ing coefficients" (Mozer and Smolensky, 1989). Generalization performance has
been reported to increase significantly on the somewhat small problems examined.
Two drawbacks of these techniques are that they require fine-tuning of the "prun
ing" coefficients to avoid catastrophic effects, and also that the learning process
is significantly slowed down. Such methods include the implicit hypothesis that
the appropriate measure of network complexity is the number of parameters (or
sometimes the number of units) in the network.

One of the main points of this paper is to move beyond the approximation that
"magnitude equals saliency" , and propose a theoretically justified saliency measure.

600 Le Cun, Denker and Solla

Our technique uses the second derivative of the objective function with respect to
the parameters to compute the saliencies. The method was ,,-alidated using our
handwritten digit recognition network trained with backpropagation (Le Cun et aI.,
1990b).

2 OPTIMAL BRAIN DAMAGE

Objective functions playa central role in this field; therefore it is more than rea
sonable to define the saliency of a parameter to be the change in the objective
function caused by deleting that parameter. It would be prohibiti,-ely laborious to
evaluate the saliency directly from this definition, i.e. by temporarily deleting each
parameter and reevaluating the objective function.

Fortunately, it is possible to construct a local model of the error function and
analytically predict the effect of perturbing the parameter vector. "'e approximate
the objective function E by a Taylor series. A perturbation lL~ of the parameter
vector will change the objective function by

(1)

Here, the 6ui'S are the components of flJ, the gi's are the components of the gradient
G of E with respect to U, and the hi;'S are the elements of the Hessian matrix H
of E with respect to U:

8E
gi= -8

Ui
and (2)

The goal is to find a set of parameters whose deletion will cause the least increase
of E . This problem is practically insoluble in the general case. One reason is
that the matrix H is enormous (6.5 x 106 terms for our 2600 parameter network),
and is very difficult to compute. Therefore we must introduce some simplifying
approximations. The "diagonal" approximation assumes that the 6E caused by
deleting several parameters is the sum of the 6E's caused by delet~ each parameter
individually; cross terms are neglected, so third term of the npt hand side of
equation 1 is discarded. The "extremal" approximation assumes that parameter
deletion will be performed after training has converged. The parameter vector is
then at a (local) minimum of E and the first term of the right hand side of equation 1
can be neglected. Furthermore, at a local minimum, all the hii's are non-negative,
so any perturbation of the parameters will cause E to increase or stay the same.
Thirdly, the "quadratic" approximation assumes that the cost fundion is nearly
quadratic 80 that the last term in the equation can be neglected. Equation 1 then
reduces to

6E=~~h"6u~
2L.i " • i

(3)

Optimal Brain Damage 601

2.1 COMPUTING THE SECOND DERIVATIVES

Now we need an efficient way of computing the diagonal second derivatives hii .

Such a procedure was derived in (Le Cun, 1987), and was the basis of a fast back
propagation method used extensively in \1lrious applications (Becker and Le Cun,
1989; Le Cun, 1989; Le Cun et al., 1990a). The procedure is very similar to the
back-propagation algorithm used for computing the first derivatives. We will only
outline the proced ure; details can be found in the references.

We assume the objective function is the usual mean-squared error (MSE); general
ization to other additive error measures is straightforward. The following expres
sions apply to a single input pattern; afterward E and H must be averaged over
the training set. The network state is computed using the standard formulae

and ai = L WijZj
j

(4)

where Zi is the state of unit i, ai its total input (weighted sum), ! the squashing
function and Wij is the connection going from unit j to unit i. In a shared-weight
network like ours, a single parameter Uk can control one or more connections: Wij =
Uk for all (i, j) E Vk, where Vk is a set of index pairs. By the chain rule, the diagonal
terms of H are given by

{)2E

hu = L {)w~,
(i,j)EV. .,

The summand can be expanded (using the basic network equations 4) as:

{J2E lP E 2
--=-z·
{Jw~. {Ja~' ., .

The second derivatives are back-propagated from layer to layer:

(5)

(6)

(7)

We also need the boundary condition at the output layer, specifying the second
derivative of E with respect to the last-layer weighted BUms:

{J{J2 ~ = 2!'(ai)2 - 2(di - Zi)!"(ai)
ai

for all units i in the output layer.

(8)

As can be seen, computing the diagonal Hessian is of the same order of complexity
as computing the gradient. In some cases, the second term of the right hand side of
the last two equations (involving the second derivative of I) can be neglected. This
corresponds to the well-known Levenberg-Marquardt approximation, and has the
interesting property of giving guaranteed positive estimates of the second derivative.

602 Le Cun, Denker and Solla

2.2 THE RECIPE

The OBO procedure can be carried out as follows:

1. Choose a reasonable network architecture
2. Train the network until a reasonable solution is obtained
3. Compute the second derivatives hu for each parameter
4. Compute the saliencies for each parameter: Sk = �h�u�u�~�/�2�
5. Sort the parameters by saliency and delete some low-saliency parameters
6. Iterate to step 2

Deleting a parameter is defined as setting it to 0 and freezing it there. Several
variants of the procedure can be devised, such as decreasing the ... 41ues of the low
saliency parameters instead of simply setting them to 0, or allowing the deleted
parameters to adapt again after they have been set to o.
2.3 EXPERIMENTS

The simulation results given in this section were obtained using back-propagation
applied to handwritten digit recognition. The initial network was highly constrained
and sparsely connected, having 105 connections controlled by 2578 free parameters.
It was trained on a database of segmented handwritten zip code digits and printed
digits containing approximately 9300 training examples and 3350 t.est examples.
More details can be obtained from the companion paper (Le Cun et al., 1990b).

16

14
1
10

pJ 8

�~�6�
b04
o -

o

<a>

Magnitude

OBD

�~�~�-�-�~�-�-�~�-�-�-�+�-�-�~�-�-�-�-�~�
o 500 1000 1500 2000 2SOO

Parameters

16

14
1
10

pJ 8

�~�6�
b04
.9

o

(b)

�-�2�~� __ �~� __ �~� __ -+ ________ �~�

o SOO 1000 1500 laX) 2SOO
Parameters

Figure 1: (a) Objective function (in dB) versus number of paramet.ers for OBn
(lower curve) and magnitude-based parameter deletion (upper curve). (b) Predicted
and actual objective function versus number of parameters. The predicted value
(lower curve) is the sum of the saliencies of the deleted parameters.

Figure la shows how the objective function increases (from right to left) as the
number of remaining parameters decreases. It is clear that �d�e�l�e�t�i�n�~� parameters by

