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Abstract

The standard 2-norm SVM is known for its good performance in two-
class classi£cation. In this paper, we consider the 1-norm SVM. We
argue that the 1-norm SVM may have some advantage over the standard
2-norm SVM, especially when there are redundant noise features. We
also propose an ef£cient algorithm that computes the whole solution path
of the 1-norm SVM, hence facilitates adaptive selection of the tuning
parameter for the 1-norm SVM.

1 Introduction

In standard two-class classi£cation problems, we are given a set of training data (x1, y1),
. . . (xn, yn), where the input xi ∈ Rp, and the output yi ∈ {1,−1} is binary. We wish to
£nd a class£cation rule from the training data, so that when given a new input x, we can
assign a class y from {1,−1} to it.

To handle this problem, we consider the 1-norm support vector machine (SVM):

min
β0,β

n∑
i=1


1 − yi


β0 +

q∑
j=1

βjhj(xi)







+

(1)

s.t. ‖β‖1 = |β1| + · · · + |βq| ≤ s, (2)

where D = {h1(x), . . . hq(x)} is a dictionary of basis functions, and s is a tuning parame-
ter. The solution is denoted as β̂0(s) and β̂(s); the £tted model is

f̂(x) = β̂0 +
q∑

j=1

β̂jhj(x). (3)

The classi£cation rule is given by sign[f̂(x)]. The 1-norm SVM has been successfully
used in [1] and [9]. We argue in this paper that the 1-norm SVM may have some advantage
over the standard 2-norm SVM, especially when there are redundant noise features.

To get a good £tted model f̂(x) that performs well on future data, we also need to select
an appropriate tuning parameter s. In practice, people usually pre-specify a £nite set of
values for s that covers a wide range, then either use a separate validation data set or use



cross-validation to select a value for s that gives the best performance among the given set.
In this paper, we illustrate that the solution path β̂(s) is piece-wise linear as a function of
s (in the Rq space); we also propose an ef£cient algorithm to compute the exact whole
solution path {β̂(s), 0 ≤ s ≤ ∞}, hence help us understand how the solution changes
with s and facilitate the adaptive selection of the tuning parameter s. Under some mild
assumptions, we show that the computational cost to compute the whole solution path β̂(s)
is O(nq min(n, q)2) in the worst case and O(nq) in the best case.

Before delving into the technical details, we illustrate the concept of piece-wise linearity
of the solution path β̂(s) with a simple example. We generate 10 training data in each of
two classes. The £rst class has two standard normal independent inputs x1, x2. The second
class also has two standard normal independent inputs, but conditioned on 4.5 ≤ x2

1+x2
2 ≤

8. The dictionary of basis functions is D = {
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2}. The solution

path β̂(s) as a function of s is shown in Figure 1. Any segment between two adjacent
vertical lines is linear. Hence the right derivative of β̂(s) with respect to s is piece-wise
constant (in Rq). The two solid paths are for x2

1 and x2
2, which are the two relevant features.
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Figure 1: The solution path β̂(s) as a function of s.

In section 2, we motivate why we are interested in the 1-norm SVM. In section 3, we
describe the algorithm that computes the whole solution path β̂(s). In section 4, we show
some numerical results on both simulation data and real world data.

2 Regularized support vector machines

The standard 2-norm SVM is equivalent to £t a model that

min
β0,βj

n∑
i=1


1 − yi


β0 +

q∑
j=1

βjhj(xi)







+

+ λ‖β‖2
2, (4)

where λ is a tuning parameter. In practice, people usually choose hj(x)’s to be the basis
functions of a reproducing kernel Hilbert space. Then a kernel trick allows the dimension
of the transformed feature space to be very large, even in£nite in some cases (i.e. q = ∞),
without causing extra computational burden ([2] and [12]). In this paper, however, we will
concentrate on the basis representation (3) rather than a kernel representation.

Notice that (4) has the form loss + penalty, and λ is the tuning parameter that controls
the tradeoff between loss and penalty. The loss (1 − yf)+ is called the hinge loss, and



the penalty is called the ridge penalty. The idea of penalizing by the sum-of-squares of the
parameters is also used in neural networks, where it is known as weight decay. The ridge
penalty shrinks the £tted coef£cients β̂ towards zero. It is well known that this shrinkage
has the effect of controlling the variances of β̂, hence possibly improves the £tted model’s
prediction accuracy, especially when there are many highly correlated features [6]. So from
a statistical function estimation point of view, the ridge penalty could possibly explain the
success of the SVM ([6] and [12]). On the other hand, computational learning theory has
associated the good performance of the SVM to its margin maximizing property [11], a
property of the hinge loss. [8] makes some effort to build a connection between these two
different views.

In this paper, we replace the ridge penalty in (4) with the L1-norm of β, i.e. the lasso
penalty [10], and consider the 1-norm SVM problem:

min
β0,β

n∑
i=1


1 − yi


β0 +

q∑
j=1

βjhj(xi)







+

+ λ‖β‖1, (5)

which is an equivalent Lagrange version of the optimization problem (1)-(2).

The lasso penalty was £rst proposed in [10] for regression problems, where the response y
is continuous rather than categorical. It has also been used in [1] and [9] for classi£cation
problems under the framework of SVMs. Similar to the ridge penalty, the lasso penalty also
shrinks the £tted coef£cients β̂’s towards zero, hence (5) also bene£ts from the reduction
in £tted coef£cients’ variances. Another property of the lasso penalty is that because of the
L1 nature of the penalty, making λ suf£ciently large, or equivalently s suf£ciently small,
will cause some of the coef£cients β̂j’s to be exactly zero. For example, when s = 1 in
Figure 1, only three £tted coef£cients are non-zero. Thus the lasso penalty does a kind of
continuous feature selection, while this is not the case for the ridge penalty. In (4), none of
the β̂j’s will be equal to zero.

It is interesting to note that the ridge penalty corresponds to a Gaussian prior for the βj’s,
while the lasso penalty corresponds to a double-exponential prior. The double-exponential
density has heavier tails than the Gaussian density. This re¤ects the greater tendency of
the lasso to produce some large £tted coef£cients and leave others at 0, especially in high
dimensional problems. Recently, [3] consider a situation where we have a small number of
training data, e.g. n = 100, and a large number of basis functions, e.g. q = 10, 000. [3]
argue that in the sparse scenario, i.e. only a small number of true coef£cients βj’s are non-
zero, the lasso penalty works better than the ridge penalty; while in the non-sparse scenario,
e.g. the true coef£cients βj’s have a Gaussian distribution, neither the lasso penalty nor
the ridge penalty will £t the coef£cients well, since there is too little data from which to
estimate these non-zero coef£cients. This is the curse of dimensionality taking its toll.
Based on these observations, [3] further propose the bet on sparsity principle for high-
dimensional problems, which encourages using lasso penalty.

3 Algorithm

Section 2 gives the motivation why we are interested in the 1-norm SVM. To solve the
1-norm SVM for a £xed value of s, we can transform (1)-(2) into a linear programming
problem and use standard software packages; but to get a good £tted model f̂(x) that
performs well on future data, we need to select an appropriate value for the tuning paramter
s. In this section, we propose an ef£cient algorithm that computes the whole solution path
β̂(s), hence facilitates adaptive selection of s.



3.1 Piece-wise linearity

If we follow the solution path β̂(s) of (1)-(2) as s increases, we will notice that since both∑
i(1 − yif̂i)+ and ‖β‖1 are piece-wise linear, the Karush-Kuhn-Tucker conditions will

not change when s increases unless a residual (1 − yif̂i) changes from non-zero to zero,
or a £tted coef£cient β̂j(s) changes from non-zero to zero, which correspond to the non-
smooth points of

∑
i(1 − yif̂i)+ and ‖β‖1. This implies that the derivative of β̂(s) with

respect to s is piece-wise constant, because when the Karush-Kuhn-Tucker conditions do
not change, the derivative of β̂(s) will not change either. Hence it indicates that the whole
solution path β̂(s) is piece-wise linear. See [13] for details.

Thus to compute the whole solution path β̂(s), all we need to do is to £nd the joints, i.e.
the asterisk points in Figure 1, on this piece-wise linear path, then use straight lines to
interpolate them, or equivalently, to start at β̂(0) = 0, £nd the right derivative of β̂(s), let
s increase and only change the derivative when β̂(s) gets to a joint.

3.2 Initial solution (i.e. s = 0)

The following notation is used. Let V = {j : β̂j(s) �= 0}, E = {i : 1 − yif̂i = 0},
L = {i : 1 − yif̂i > 0} and u for the right derivative of β̂V(s): ‖u‖1 = 1 and β̂V(s)
denotes the components of β̂(s) with indices in V . Without loss of generality, we assume
#{yi = 1} ≥ #{yi = −1}; then β̂0(0) = 1, β̂j(0) = 0. To compute the path that β̂(s)
follows, we need to compute the derivative of β̂(s) at 0. We consider a modi£ed problem:

min
β0,βj

∑
yi=1

(1 − yifi)+ +
∑

yi=−1

(1 − yifi) (6)

s.t. ‖β‖1 ≤ ∆s, fi = β0 +
q∑

j=1

βjhj(xi). (7)

Notice that if yi = 1, the loss is still (1 − yifi)+; but if yi = −1, the loss becomes
(1 − yifi). In this setup, the derivative of β̂(∆s) with respect to ∆s is the same no matter
what value ∆s is, and one can show that it coincides with the right derivative of β̂(s)
when s is suf£ciently small. Hence this setup helps us £nd the initial derivative u of β̂(s).
Solving (6)-(7), which can be transformed into a simple linear programming problem, we
get initial V , E and L. |V| should be equal to |E|. We also have:(

β̂0(∆s)
β̂V(∆s)

)
=

(
1
0

)
+ ∆s ·

(
u0

u

)
. (8)

∆s starts at 0 and increases.

3.3 Main algorithm

The main algorithm that computes the whole solution path β̂(s) proceeds as following:

1. Increase ∆s until one of the following two events happens:

• A training point hits E , i.e. 1 − yifi �= 0 becomes 1 − yifi = 0 for some i.

• A basis function in V leaves V , i.e. β̂j �= 0 becomes β̂j = 0 for some j.

Let the current β̂0, β̂ and s be denoted by β̂old
0 , β̂old and sold.



2. For each j∗ /∈ V , we solve:{
u0 +

∑
V ujhj(xi) + uj∗hj∗(xi) = 0 for i ∈ E∑

V sign(β̂old
j )uj + |uj∗ | = 1 (9)

where u0, uj and uj∗ are the unknowns. We then compute:

∆lossj∗

∆s
=

∑
L

yi

(
u0 +

∑
V

ujhj(xi) + uj∗hj∗(xi)

)
. (10)

3. For each i′ ∈ E , we solve:{
u0 +

∑
V ujhj(xi) = 0 for i ∈ E\{i′}∑

V sign(β̂old
j )uj = 1 (11)

where u0 and uj are the unknowns. We then compute:

∆lossi′

∆s
=

∑
L

yi

(
u0 +

∑
V

ujhj(xi)

)
. (12)

4. Compare the computed values of ∆loss
∆s from step 2 and step 3. There are q−|V|+

|E| = q + 1 such values. Choose the smallest negative ∆loss
∆s . Hence,

• If the smallest ∆loss
∆s is non-negative, the algorithm terminates; else

• If the smallest negative ∆loss
∆s corresponds to a j∗ in step 2, we update

V ← V ∪ {j∗}, u ←
(

u
uj∗

)
. (13)

• If the smallest negative ∆loss
∆s corresponds to a i′ in step 3, we update u and

E ← E\{i′}, L ← L ∪ {i′} if necessary. (14)

In either of the last two cases, β̂(s) changes as:(
β̂0(sold + ∆s)
β̂V(sold + ∆s)

)
=

(
β̂old

0

β̂old
V

)
+ ∆s ·

(
u0

u

)
, (15)

and we go back to step 1.

In the end, we get a path β̂(s), which is piece-wise linear.

3.4 Remarks

Due to the page limit, we omit the proof that this algorithm does indeed give the exact
whole solution path β̂(s) of (1)-(2) (see [13] for detailed proof). Instead, we explain a little
what each step of the algorithm tries to do.

Step 1 of the algorithm indicates that β̂(s) gets to a joint on the solution path and the right
derivative of β̂(s) needs to be changed if either a residual (1−yif̂i) changes from non-zero
to zero, or the coef£cient of a basis function β̂j(s) changes from non-zero to zero, when s
increases. Then there are two possible types of actions that the algorithm can take: (1) add
a basis function into V , or (2) remove a point from E .

Step 2 computes the possible right derivative of β̂(s) if adding each basis function hj∗(x)
into V . Step 3 computes the possible right derivative of β̂(s) if removing each point i′

from E . The possible right derivative of β̂(s) (determined by either (9) or (11)) is such that
the training points in E are kept in E when s increases, until the next joint (step 1) occurs.
∆loss/∆s indicates how fast the loss will decrease if β̂(s) changes according to u. Step 4
takes the action corresponding to the smallest negative ∆loss/∆s. When the loss can not
be decreased, the algorithm terminates.



Table 1: Simulation results of 1-norm and 2-norm SVM

Test Error (SE)
Simulation 1-norm 2-norm No Penalty |D| # Joints

1 No noise input 0.073 (0.010) 0.08 (0.02) 0.08 (0.01) 5 94 (13)
2 2 noise inputs 0.074 (0.014) 0.10 (0.02) 0.12 (0.03) 14 149 (20)
3 4 noise inputs 0.074 (0.009) 0.13 (0.03) 0.20 (0.05) 27 225 (30)
4 6 noise inputs 0.082 (0.009) 0.15 (0.03) 0.22 (0.06) 44 374 (52)
5 8 noise inputs 0.084 (0.011) 0.18 (0.03) 0.22 (0.06) 65 499 (67)

3.5 Computational cost

We have proposed an algorithm that computes the whole solution path β̂(s). A natural
question is then what is the computational cost of this algorithm? Suppose |E| = m at a
joint on the piece-wise linear solution path, then it takes O(qm2) to compute step 2 and
step 3 of the algorithm through Sherman-Morrison updating formula. If we assume the
training data are separable by the dictionary D, then all the training data are eventually
going to have loss (1 − yif̂i)+ equal to zero. Hence it is reasonable to assume the number
of joints on the piece-wise linear solution path is O(n). Since the maximum value of m
is min(n, q) and the minimum value of m is 1, we get the worst computational cost is
O(nq min(n, q)2) and the best computational cost is O(nq). Notice that this is a rough
calculation of the computational cost under some mild assumptions. Simulation results
(section 4) actually indicate that the number of joints tends to be O(min(n, q)).

4 Numerical results

In this section, we use both simulation and real data results to illustrate the 1-norm SVM.

4.1 Simulation results

The data generation mechanism is the same as the one described in section 1, except that
we generate 50 training data in each of two classes, and to make harder problems, we
sequentially augment the inputs with additional two, four, six and eight standard normal
noise inputs. Hence the second class almost completely surrounds the £rst, like the skin
surrounding the oragne, in a two-dimensional subspace. The Bayes error rate for this prob-
lem is 0.0435, irrespective of dimension. In the original input space, a hyperplane cannot
separate the classes; we use an enlarged feature space corresponding to the 2nd degree poly-
nomial kernel, hence the dictionary of basis functions is D = {

√
2xj ,

√
2xjxj′ , x2

j , j, j
′ =

1, . . . p}. We generate 1000 test data to compare the 1-norm SVM and the standard 2-norm
SVM. The average test errors over 50 simulations, with different numbers of noise inputs,
are shown in Table 1. For both the 1-norm SVM and the 2-norm SVM, we choose the
tuning parameters to minimize the test error, to be as fair as possible to each method. For
comparison, we also include the results for the non-penalized SVM.

From Table 1 we can see that the non-penalized SVM performs signi£cantly worse than the
penalized ones; the 1-norm SVM and the 2-norm SVM perform similarly when there is no
noise input (line 1), but the 2-norm SVM is adversely affected by noise inputs (line 2 - line
5). Since the 1-norm SVM has the ability to select relevant features and ignore redundant
features, it does not suffer from the noise inputs as much as the 2-norm SVM. Table 1 also
shows the number of basis functions q and the number of joints on the piece-wise linear
solution path. Notice that q < n and there is a striking linear relationship between |D| and
#Joints (Figure 2). Figure 2 also shows the 1-norm SVM result for one simulation.
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Figure 2: Left and middle panels: 1-norm SVM when there are 4 noise inputs. The left panel is the
piece-wise linear solution path β̂(s). The two upper paths correspond to x2

1 and x2
2, which are the

relevant features. The middle panel is the test error along the solution path. The dash lines correspond
to the minimum of the test error. The right panel illustrates the linear relationship between the number
of basis functions and the number of joints on the solution path when q < n.

4.2 Real data results

In this section, we apply the 1-norm SVM to classi£cation of gene microarrays. Classi-
£cation of patient samples is an important aspect of cancer diagnosis and treatment. The
2-norm SVM has been successfully applied to microarray cancer diagnosis problems ([5]
and [7]). However, one weakness of the 2-norm SVM is that it only predicts a cancer class
label but does not automatically select relevant genes for the classi£cation. Often a primary
goal in microarray cancer diagnosis is to identify the genes responsible for the classi£ca-
tion, rather than class prediction. [4] and [5] have proposed gene selection methods, which
we call univariate ranking (UR) and recursive feature elimination (RFE) (see [14]), that can
be combined with the 2-norm SVM. However, these procedures are two-step procedures
that depend on external gene selection methods. On the other hand, the 1-norm SVM has
an inherent gene (feature) selection property due to the lasso penalty. Hence the 1-norm
SVM achieves the goals of classi£cation of patients and selection of genes simultaneously.

We apply the 1-norm SVM to leukemia data [4]. This data set consists of 38 training data
and 34 test data of two types of acute leukemia, acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). Each datum is a vector of p = 7, 129 genes. We use the
original input xj , i.e. the jth gene’s expression level, as the basis function, i.e. q = p.
The tuning parameter is chosen according to 10-fold cross-validation, then the £nal model
is £tted on all the training data and evaluated on the test data. The number of joints on
the solution path is 104, which appears to be O(n) 
 O(q). The results are summarized
in Table 2. We can see that the 1-norm SVM performs similarly to the other methods
in classi£cation and it has the advantage of automatically selecting relevant genes. We
should notice that the maximum number of genes that the 1-norm SVM can select is upper
bounded by n, which is usually much less than q in microarray problems.

5 Conclusion

We have considered the 1-norm SVM in this paper. We illustrate that the 1-norm SVM may
have some advantage over the 2-norm SVM, especially when there are redundant features.
The solution path β̂(s) of the 1-norm SVM is a piece-wise linear function in the tuning



Table 2: Results on Microarray Classi£cation

Method CV Error Test Error # of Genes
2-norm SVM UR 2/38 3/34 22
2-norm SVM RFE 2/38 1/34 31
1-norm SVM 2/38 2/34 17

parameter s. We have proposed an ef£cient algorithm to compute the whole solution path
β̂(s) of the 1-norm SVM, and facilitate adaptive selection of the tuning parameter s.
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