
Invariant Pattern Recognition
by Semidefinite Programming Machines

Thore Graepel
Microsoft Research Ltd.

Cambridge, UK
thoreg@microsoft.com

Ralf Herbrich
Microsoft Research Ltd.

Cambridge, UK
rherb@microsoft.com

Abstract

Knowledge about local invariances with respect to given pattern
transformations can greatly improve the accuracy of classification.
Previous approaches are either based on regularisation or on the gen-
eration of virtual (transformed) examples. We develop a new frame-
work for learning linear classifiers under known transformations based
on semidefinite programming. We present a new learning algorithm—
the Semidefinite Programming Machine (SDPM)—which is able to
find a maximum margin hyperplane when the training examples are
polynomial trajectories instead of single points. The solution is found
to be sparse in dual variables and allows to identify those points on
the trajectory with minimal real-valued output as virtual support vec-
tors. Extensions to segments of trajectories, to more than one trans-
formation parameter, and to learning with kernels are discussed. In
experiments we use a Taylor expansion to locally approximate rota-
tional invariance in pixel images from USPS and find improvements
over known methods.

1 Introduction

One of the central problems of pattern recognition is the exploitation of known in-
variances in the pattern domain. In images these invariances may include rotation,
translation, shearing, scaling, brightness, and lighting direction. In addition, specific
domains such as handwritten digit recognition may exhibit invariances such as line
thinning/thickening and other non-uniform deformations [8]. The challenge is to com-
bine the training sample with the knowledge of invariances to obtain a good classifier.

Possibly the most straightforward way of incorporating invariances is by including
virtual examples into the training sample which have been generated from actual ex-
amples by the application of the invariance T : R × Rn → Rn at some fixed θ ∈ R,
e.g. the method of virtual support vectors [7]. Images x subjected to the transforma-
tion T (θ, ·) describe highly non-linear trajectories or manifolds in pixel space. The
tangent distance [8] approximates the distance between the trajectories (manifolds)
by the distance between their tangent vectors (planes) at a given value θ = θ0 and can
be used with any kind of distance-based classifier. Another approach, tangent prop
[8], incorporates the invariance T directly into the objective function for learning by
penalising large values of the derivative of the classification function w.r.t. the given



transformation parameter. A similar regulariser can be applied to support vector
machines [1].

We take up the idea of considering the trajectory given by the combination of training
vector and transformation. While data in machine learning are commonly represented
as vectors x ∈ Rn we instead consider more complex training examples each of which
is represented as a (usually infinite) set

{T (θ,xi) : θ ∈ R} ⊂ Rn , (1)

which constitutes a trajectory in Rn. Our goal is to learn a linear classifier that sepa-
rates well the training trajectories belonging to different classes. In practice, we may
be given a “standard” training example x together with a differentiable transforma-
tion T representing an invariance of the learning problem. The problem can be solved
if the transformation T is approximated by a transformation T̃ polynomial in θ, e.g.,
a Taylor expansion of the form

T̃ (θ,xi) ≈
r∑

j=0

θj ·
(

1
j!

djT (θ,xi)
dθj

∣∣∣∣
θ=0

)
=

r∑

j=0

θj · (Xi)j,· . (2)

Our approach is based on a powerful theorem by Nesterov [5] which states that the
set P+

2l of polynomials of degree 2l non-negative on the entire real line is a convex set
representable by positive semidefinite (psd) constraints. Hence, optimisation over P+

2l
can be formulated as a semidefinite program (SDP). Recall that an SDP [9] is given
by a linear objective function minimised subject to a linear matrix inequality (LMI),

minimise
w∈Rn

c>w subject to A (w) :=
n∑

j=1

wjAj −B º 0 , (3)

with Aj ∈ Rm×m for all j ∈ {0, . . . , n}. The LMI A (w) º 0 means that
A (w) is required to be positive semidefinite, i.e., that for all v ∈ Rn we have
v>A (w)v =

∑n
j=1 wj

(
v>Ajv

) − v>Bv ≥ 0 which reveals that LMI constraints
correspond to infinitely many linear constraints. This expressive power can be used
to enforce constraints for training examples as given by (1), i.e., constraints required
to hold for all values θ ∈ R. Based on this representability theorem for non-negative
polynomials we develop a learning algorithm—the Semidefinite Programming Machine
(SDPM)—that maximises the margin on polynomial training samples, much like the
support vector machine [2] for ordinary single vector data.

2 Semidefinite Programming Machines

Linear Classifiers and Polynomial Examples We consider binary classification
problems and linear classifiers. Given a training sample ((x1, y1) , . . . , (xm, ym)) ∈
(Rn × {−1, +1})m we aim at learning a weight vector1 w ∈ Rn to classify examples x
by y (x) = sign

(
w>x

)
. Assuming linear separability of the training sample the prin-

ciple of empirical risk minimisation recommends finding a weight vector w such that
for all i ∈ {1, . . . ,m} we have yiw>xi ≥ 0. As such this constitutes a linear feasibility
problem and is easily solved by the perceptron algorithm [6]. Additionally requiring
the solution to maximise the margin leads to the well-known quadratic program of
support vector learning [2].

In order to be able to cope with known invariances T (θ, ·) we would like to generalise
the above setting to the following feasibility problem:

find w ∈ Rn such that ∀i ∈ {1, . . . , m} : ∀θ ∈ R : yiw>xi (θ) ≥ 0 , (4)
1We omit an explicit threshold to unclutter the presentation.



0.1 0.2 0.3 0.4 0.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

φ
1
(x)

φ 2(x
)

SVM version space

SDPM version space

Figure 1: (Left) Approximated trajectories for rotated USPS images (2) for r = 1
(dashed line) and r = 2 (dotted line). The features are the mean pixel intensities in
the top and bottom half of the image. (Right) Set of weight vectors w which are
consistent with the six images (top) and the six trajectories (bottom). The SDPM
version space is smaller and thus determines the weight vector more precisely. The
dot corresponds to the separating plane in the left plot.

that is, we would require the weight vector to classify correctly every transformed
training example xi (θ) := T (θ,xi) for every value of the transformation parameter θ.
The situation is illustrated in Figure 1. In general, such a set of constraints leads to a
very complex and difficult-to-solve feasibility problem. As a consequence, we consider
only transformations T̃ (θ,x) of polynomial form, i.e., x̃i (θ) := T̃ (θ,xi) = X>

i θ, each
polynomial example x̃i (θ) being represented by a polynomial in the row vectors of
Xi ∈ R(r+1)×n, with θ := (1, θ, . . . , θr)>. Then the problem (4) can be written as

find w ∈ Rn such that ∀i ∈ {1, . . . , m} : ∀θ ∈ R : yiw>X>
i θ ≥ 0 , (5)

which is equivalent to finding a weight vector w such that the polynomials pi (θ) :=
yiw>X>

i θ are non-negative everywhere, i.e., pi ∈ P+
r . The following proposition by

Nesterov [5] paves the way for an SDP formulation of the above problem if r = 2l.
Proposition 1 (SD Representation of Non-Negative Polynomials [5]). The
set P+

2l of polynomials non-negative everywhere on the real line is SD-representable:

1. For every P º 0 the polynomial p (θ) = θ>Pθ is non-negative everywhere.

2. For every polynomial p ∈ P+
2l there exists a P º 0 such that p (θ) = θ>Pθ.

Proof. Any polynomial p ∈ P2l can be written as p (θ) = θ>Pθ, where P = P> ∈
R(l+1)×(l+1). Statement 1 : P º 0 implies ∀θ ∈ R : p (θ) = θ>Pθ = ‖P 1

2 θ‖2 ≥ 0,
hence p ∈ P+

2l . Statement 2 : Every non-negative polynomial p ∈ P+
2l can be written as

a sum of squared polynomials [4], hence ∃qi ∈ Pl : p (θ) =
∑

i q2
i (θ) = θ>

(∑
i qiq>i

)
θ

where P :=
∑

i qiq>i º 0 and qi is the coefficient vector of polynomial qi.

Maximising Margins on Polynomial Samples Here we develop an SDP for-
mulation for learning a maximum margin classifier given the polynomial constraints



(5). It is well-known that SDPs include quadratic programs as a special case [9].
The squared objective ‖w‖2 is minimised by replacing it with an auxiliary variable t

subject to a quadratic constraint t ≥ ‖w‖2 that is written as an LMI using Schur’s
complement lemma,

minimise
(w,t)

1
2
t subject to F (w, t) :=

(
In w
w> t

)
º 0 ,

and ∀i : G (w,Xi, yi) := G0 +
n∑

j=1

wjGj

(
(Xi)·,j , yi

)
º 0 . (6)

This constitutes an SDP as in (3) by the fact that a block-diagonal matrix is psd if
and only if all its diagonal blocks are psd.

For the sake of illustration consider the case of l = 0 (the simplest non-trivial case).
The matrix G (w,Xi, yi) reduces to a scalar yiw>xi − 1, which translates into the
standard SVM constraint yiw>xi ≥ 1 linear in w.

For the case l = 1 we have G (w,Xi, yi) ∈ R2×2 and

G (w,Xi, yi) =
(

yiw>(Xi)0,· − 1 1
2yiw>(Xi)1,·

1
2yiw>(Xi)1,· yiw>(Xi)2,·

)
. (7)

Although we require G (w,Xi, yi) to be psd the resulting optimisation problem can
be formulated in terms of a second-order cone program (SOCP) because the matrices
involved are only 2× 2.2

For the case l ≥ 2 the resulting program constitutes a genuine SDP. Again for the sake
of illustration we consider the case l = 2 first. Since a polynomial p of degree four is
fully determined by its five coefficients p0, . . . , p4, but the symmetric matrix P ∈ R3×3

in p (θ) = θ>Pθ has six degrees of freedom we require one auxiliary variable ui per
training example,

G (w, ui,Xi, yi) =
1
2




2yiw> (Xi)0,· − 2 yiw> (Xi)1,· yiw> (Xi)2,· − ui

yiw> (Xi)1,· 2ui yiw> (Xi)3,·
yiw> (Xi)2,· − ui yiw> (Xi)3,· yiw> (Xi)4,·


 .

In general, since a polynomial of degree 2l has 2l + 1 coefficients and a symmetric
(l + 1)× (l + 1) matrix has (l + 1) (l + 2) /2 degrees of freedom we require (l − 1) l/2
auxiliary variables.

Dual Program and Complementarity Let us consider the dual SDPs corre-
sponding to the optimisation problems above. For the sake of clarity, we restrict the
presentation to the case l = 1. The dual of the general SDP (3) is given by

maximise
Λ∈Rm×m

tr (BΛ) subject to ∀j ∈ {1, . . . , n} : tr (AjΛ) = cj ; Λ º 0,

where we introduced a matrix Λ of dual variables. The complementarity conditions
for the optimal solution (w∗, t∗) read A ((w∗, t∗))Λ∗ = 0 . The dual formulation of
(6) with matrix (7) combined with the F (w, t) part of the complementarity conditions
reads

maximise
(α,β,γ)∈R3m

−1
2

m∑

i=1

m∑

j=1

yiyj [x̃ (αi, βi, γi,Xi)]
> [x̃ (αj , βj , γj ,Xj)] +

m∑

i=1

αi

subject to ∀i ∈ {1, . . . , m} : Mi :=
(

αi βi

βi γi

)
º 0 , (8)

2The characteristic polynomial of a 2×2 matrix is quadratic and has at most two solutions.
The condition that the lower eigenvalue be non-negative can be expressed as a second-order
cone constraint. The SOCP formulation—if applicable—can be solved more efficiently than
the SDP formulation.



where we define extrapolated training examples x̃(αi, βi, γi,Xi) := αi(Xi)0,· +
βi(Xi)1,· + γi(Xi)2,·. As before this program with quadratic objective and psd con-
straints can be formulated as a standard SDP in the form (3) and is easily solved by
a standard SDP solver3. In addition, the complementarity conditions reveal that the
optimal weight vector w∗ can be expanded as

w∗ =
m∑

i=1

yix̃ (αi, βi, γi,Xi) , (9)

in analogy to the corresponding result for support vector machines [2].

It remains to analyse the complementarity conditions related to the example-related
G (w,Xi, yi) constraints in (6). Using (7) and assuming primal and dual feasibility
we obtain for all i ∈ {1, . . . ,m} at the solution (w∗, t∗,M∗

i ),

G (w∗,Xi, yi) ·M∗
i = 0 , (10)

the trace of which translates into

yiw∗,> [α∗i (Xi)0,· + β∗i (Xi)1,· + γ∗i (Xi)2,·] = α∗i . (11)

These relations enable us to characterise the solution by the following propositions:

Proposition 2 (Sparse Expansion). The expansion (9) of w∗ in terms of Xi is
sparse: Only those examples Xi (“support vectors”) may have non-zero expansion
coefficients α∗i which lie on the margin, i.e., for which det (Gi (w∗,Xi, yi)) = 0. Fur-
thermore, in this case α∗i = 0 implies β∗i = γ∗i = 0.

Proof. We assume α∗i 6= 0 and derive a contradiction. From G (w∗,Xi, yi) Â 0 we
conclude using Proposition 1 that for all θ ∈ R we have yiw∗,>((Xi)0,· + θ(Xi)1,· +
θ2(Xi)2,·) > 1. Furthermore, we conclude from (10) that det(M∗

i ) = α∗i γ
∗
i − β∗2i = 0,

which together with the assumption α∗i 6= 0 implies that there exists θ̃ ∈ R such that
β∗i = θ̃α∗i and γ∗i = β∗2i /α∗i = θ̃2α∗i . Inserting this into (11) leads to a contradiction,
hence α∗i = 0. Then, det(M∗

i ) = 0 implies β∗i = 0 and the fact that G (w∗,Xi, yi) Â
0 ⇒ yiw∗,> (Xi)2,· 6= 0 ensures that γ∗i = 0 holds as well.

Proposition 3 (Truly Virtual Support Vectors). For all examples Xi lying on
the margin, i.e., satisfying det (G (w∗,Xi, yi)) = 0 and det (M∗

i ) = 0 there exist
θi ∈ R ∪ {∞} such that the optimal weight vector w∗ can be written as

w∗ =
m∑

i=1

α∗i yix̃i (θi) =
m∑

i=1

yiα
∗
i

(
(Xi)0,· + θ∗i (Xi)1,· + θ∗2i (Xi)2,·

)

Proof. (sketch) We have det(M∗
i ) = α∗γ∗−β∗2 = 0. We only need to consider α∗i 6= 0,

in which case there exists θ∗i such that β∗i = θ∗i α∗i and γ∗i = θ∗2i α∗i . The other cases
are ruled out by the complementarity conditions (10).

Based on this proposition it is possible not only to identify which examples Xi are
used in the expansion of the optimal weight vector w∗, but also the corresponding
values θ∗i of the transformation parameter θ. This extends the idea of virtual support
vectors [7] in that Semidefinite Programming Machines are capable of finding truly
virtual support vectors that were not explicitly provided in the training sample.

3We used the SDP solver SeDuMi together with the LMI parser Yalmip under MATLAB
(see also http://www-user.tu-chemnitz.de/˜helmberg/semidef.html).



3 Extensions to SDPMs

Optimisation on a Segment In many applications it may not be desirable to
enforce correct classification on the entire trajectory given by the polynomial example
x̃ (θ). In particular, when the polynomial is used as a local approximation to a global
invariance we would like to restrict the example to a segment of the trajectory. To
this end consider the following corollary to Proposition 1.

Corollary 1 (SD-Representability on a segment [5]). For any l ∈ N, the set
P+

l (−τ, τ) of polynomials non-negative on a segment [−τ, τ ] is SD-representable.

Proof. (sketch) Consider a polynomial p ∈ P+
l (−τ, τ) where p := x 7→ ∑l

i=0 pix
i and

q := x 7→ (
1 + x2

)l · [p(τ(2x2(1 + x2)−1 − 1))] .

If q ∈ P+
2l is non-negative everywhere then p is non-negative in [−τ, τ ].

The proposition shows how we can restrict the examples x̃ (θ) to a segment θ ∈ [−τ, τ ]
by effectively doubling the degree of the polynomial used. This is the SDPM version
used in the experiments in Section 4. Note that the matrix G (w,Xi, yi) is sparse
because the resulting polynomial contains only even powers of θ.

Multiple Transformation Parameters In practice it would be desirable to treat
more than one transformation at once. For example, in handwritten digit recognition
transformations like rotation, scaling, translation, shearing, thinning/thickening etc.
may all be relevant [8]. Unfortunately, Proposition 1 only holds for polynomials in
one variable. However, its first statement may be generalised to polynomials of more
than one variable: for every psd matrix P º 0 the polynomial p (ρ) = θ>ρPθρ is
non-negative everywhere, even if θi is any monomial in ρ1, . . . , ρD. This means, that
optimisation is only over a subset of these polynomials4. Considering polynomials of
degree two and θρ := (1, ρ1, . . . , ρD) we have,

x̃i (ρ) ≈ θ>ρ

[
xi (0) ∇>ρ xi (0)
∇ρxi (0) ∇ρ∇>ρ xi (0)

]
θρ ,

where ∇>ρ denotes the gradient and ∇ρ∇>ρ denotes the Hessian operator.

Note that the scaling behaviour with regard to the number D of parameters is more
benign than that of the naive method of adding virtual examples to the training
sample on a grid. Such a procedure would incur an exponential growth in the number
of examples, whereas the approximation above only exhibits a linear growth in the
size of the matrices involved.

Learning with Kernels Support vector machines derive much of their popularity
from the flexibility added by the use of kernels [2, 7]. Due to space restrictions we
cannot discuss kernels in detail. However, taking the dual SDPM (8) as a starting
point and assuming the Taylor expansion (2) the crucial point is that in order to
represent the polynomial trajectory in feature space we need to differentiate through
the kernel function.

Let us assume a feature map φ : Rn → F ⊆ RN and k : X × X → R be the kernel
function corresponding to φ in the sense that ∀x, x̃ ∈ X : [φ(x)]>[φ(x̃)] = k (x, x̃).

4There exist polynomials in more than one variable that are non-negative everywhere yet
cannot be written as a sum of squares and are hence not SD-representable.



0.1 0.15 0.2 0.25 0.3 0.35

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SVM error

S
D

P
M

 e
rr

or

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

VSVM error

S
D

P
M

 e
rr

or

(a) (b) (c)

Figure 2: (a) A linear classifier learned with the SDPM on 10 2D-representations of
the USPS digits “1” and “9” (see Figure 1 for details). Note that the “support” vector
is truly virtual since it was never directly supplied to the algorithm (inset zoom-in).
(b) Mean test errors of classifiers learned with the SVM vs. SDPM (see text) and (c)
virtual SVM vs. SDPM algorithm on 50 independent training sets of size m = 20 for
all 45 digit classification tasks.

The Taylor expansion (2) is now carried out in F . Then an inner product expression
between data points xi and xj differentiated, respectively, u and v times reads

[
φ(u)(xi)

]> [
φ(v)(xj)

]

︸ ︷︷ ︸
k(u,v)(xi,xj)

=
N∑

s=1

(
duφs(x(θ))

dθu

∣∣∣∣
x=xi,θ=0

)
·

 dvφs(x̃(θ̃))

dθ̃v

∣∣∣∣∣
x̃=xj ,θ̃=0


 .

The kernel trick may help avoid the sum over N feature space dimensions, however,
it does so at the cost of additional terms by the product rule of differentiation. It
turns out that for polynomials of degree r = 2 the exact calculation of elements of the
kernel matrix is already O (

n4
)

and needs to be approximated efficiently in practice.

4 Experimental Results

In order to test and illustrate the SDPM we used the well-known USPS data set of
16× 16 pixel images in [0, 1] of handwritten digits. We considered the transformation
rotation by angle θ and calculated the first and second derivatives x′i (θ = 0) and
x′′i (θ = 0) based on an image representation smoothed by a Gaussian of variance 0.09.

For the purpose of illustration we calculated two simple features, averaging the first
and the second 128 pixel intensities, respectively. Figure 2 (a) shows a plot of 10
training examples of digits “1” and “9” together with the quadratically approximated
trajectories for θ ∈ [−20◦, 20◦]. The examples are separated by the solution found with
an SDPM restricted to the same segment of the trajectory. Following Propositions 2
and 3 the weight vector found is expressed as a linear combination of truly virtual
support vectors that had not been supplied in the training sample directly (see inset).

In a second experiment, we probed the performance of the SDPM algorithm on the
full feature set of 256 pixel intensities using 50 training sets of size m = 20 for each
of the 45 one-versus-one classification tasks between all of the digits from “0” to “9”
from the USPS data set. For each task, the digits in one class were rotated by −10◦
and the digits of the other class by +10◦. We compared the performance of the SDPM
algorithm to the performance of the original support vector machine (SVM) [2] and
the virtual support vector machine (VSVM) [7] measured on independent test sets
of size 250. The VSVM takes the support vectors of the ordinary SVM run and is
trained on a sample that contains these support vectors together with transformed
versions rotated by −10◦ and +10◦ in the quadratic approximation. The results are



shown in the form of scatter plots of the errors for the 45 tasks in Figure 2 (b) and (c).
Clearly, taking into account the invariance is useful and leads to SDPM performance
superior to the ordinary SVM. The SDPM also performs slightly better than the
VSVM, however, this could be attributed to the pre-selection of support vectors to
which the transformation is applied. It is expected that for increasing number D of
transformations the performance improvement becomes more pronounced because in
high dimensions most volume is concentrated on the boundary of the convex hull of
the polynomial manifold.

5 Conclusion

We introduced Semidefinite Programming Machines as a means of learning on infinite
families of examples given in terms of polynomial trajectories or—more generally—
manifolds in data space. The crucial insight lies in the SD-representability of non-
negative polynomials which allows us to replace the simple non-negativity constraint
in algorithms such as support vector machines by positive semidefinite constraints.

While we have demonstrated the performance of the SDPM only on very small data
sets it is expected that modern interior-point methods make it possible to scale SDPMs
to problems of m ≈ 105 − 106 data points, in particular in primal space where the
number of variables is given by the number of features. This expectation is further
supported by the following: (i) The resulting SDP is well structured in the sense that
A (w, t) is block-diagonal with many small blocks. (ii) It may often be sufficient to
satisfy the constraints—e.g., by a version of the perceptron algorithm for semidefinite
feasibility problems [3]—without necessarily maximising the margin.

Open questions remain about training SDPMs with multiple parameters and about
the efficient application of SDPMs with kernels. Finally, it would be interesting to
obtain learning theoretical results regarding the fact that SDPMs effectively make use
of an infinite number of (non IID) training examples.

References

[1] O. Chapelle and B. Schölkopf. Incorporating invariances in non-linear support vector
machines. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems 14, pages 609–616, Cambridge, MA, 2002. MIT
Press.

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

[3] T. Graepel, R. Herbrich, A. Kharechko, and J. Shawe-Taylor. Semidefinite programming
by perceptron learning. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in
Neural Information Processing Systems 16. MIT Press, 2004.

[4] A. Nemirovski. Five lectures on modern convex optimization, 2002. Lecture notes of the
C.O.R.E. Summer School on Modern Convex Optimization.

[5] Y. Nesterov. Squared functional systems and optimization problems. In H. Frenk,
K. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization, pages 405–
440. Kluwer Academic Press, 2000.

[6] F. Rosenblatt. The perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65(6):386–408, 1958.

[7] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Dok-
torarbeit, TU Berlin. Download: http://www.kernel-machines.org.

[8] P. Simard, Y. LeCun, J. Denker, and B. Victorri. Transformation invariance in pattern
recognition, tangent distance and tangent propagation. In G. Orr and M. K., editors,
Neural Networks: Tricks of the trade. Springer, 1998.

[9] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
1996.


