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Abstract

We present a new technique for achieving source separation when given
only a single channel recording. The main idea is based on exploiting the
inherent time structure of sound sources by learning a priori sets of basis
filters in time domain that encode the sources in a statistically efficient
manner. We derive a learning algorithm using a maximum likelihood
approach given the observed single channel data and sets of basis filters.
For each time point we infer the source signals and their contribution
factors. This inference is possible due to the prior knowledge of the
basis filters and the associated coefficient densities. A flexible model
for density estimation allows accurate modeling of the observation and
our experimental results exhibit a high level of separation performance
for mixtures of two music signals as well as the separation of two voice
signals.

1 Introduction

Extracting individual sound sources from an additive mixture of different signals has been
attractive to many researchers in computational auditory scene analysis (CASA) [1] and
independent component analysis (ICA) [2]. In order to formulate the problem, we assume
that the observed signal ��� is an addition of � independent source signals

� �����	��
�� �� ����
����������� ����
����� (1)
where 
 � � is the ����� sampled value of the  ���� source signal, and � � is the gain of each source
which is fixed over time. Note that superscripts indicate sample indices of time-varying
signals and subscripts indicate the source identification. The gain constants are affected
by several factors, such as powers, locations, directions and many other characteristics of
the source generators as well as sensitivities of the sensors. It is convenient to assume all
the sources to have zero mean and unit variance. The goal is to recover all 
 � � given only
a single sensor input � � . The problem is too ill-conditioned to be mathematically tractable
since the number of unknowns is �"!  � given only ! observations. Several earlier
attempts [3, 4, 5, 6] to this problem have been proposed based on the presumed properties
of the individual sounds in the frequency domain.

ICA is a data driven method which relaxes the strong characteristical frequency structure
assumptions. However, ICA algorithms perform best when the number of the observed
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Figure 1: Generative models for the observed mixture and original source signals (A) A
single channel observation is generated by a weighted sum of two source signals with dif-
ferent characteristics. (B) Individual source signals are generated by weighted ( ( � �*) ) linear
superpositions of basis functions ( + �*) ). (C) Examples of the actual coefficient distributions.
They generally have more sharpened summits and longer tails than a Gaussian distribution,
and would be classified as super-Gaussian. The distributions are modeled by generalized
Gaussian density functions in the form of ,.-/( � �*)10325476�8 -�9;: ( � �*) : < 0 , which provide good
matches to the non-Gaussian distributions by varying exponents. From left to right, the
exponent decreases, and the distribution becomes more super-Gaussian.

signals is greater than or equal to the number of sources [2]. Although some recent over-
complete representations may relax this assumption, the problem of separating sources
from a single channel observation remains difficult. ICA has been shown to be highly ef-
fective in other aspects such as encoding speech signals [7] and natural sounds [8]. The
basis functions and the coefficients learned by ICA constitute an efficient representation of
the given time-ordered sequences of a sound source by estimating the maximum likelihood
densities, thus reflecting the statistical structures of the sources.

The method presented in this paper aims at exploiting the ICA basis functions for separating
mixed sources from a single channel observation. Sets of basis functions are learned a
priori from a training data set and these sets are used to separate the unknown test sound
sources. The algorithm recovers the original auditory streams in a number of gradient-
ascent adaptation steps maximizing the log-likelihood of the separated signals, calculated
using the basis functions and the probability density functions (pdf’s) of their coefficients
—the output of the ICA basis filters. The object function not only makes use of the ICA
basis functions as a strong prior for the source characteristics, but also their associated
coefficient pdf’s modeled by generalized Gaussian distributions [9]. Experiments showing
the separation of the two different sources was quite successful in the simulated mixtures
of rock and jazz music, and male and female speech signals.

2 Generative Models for Mixture and Source Signals

The algorithm first involves the learning of the time-domain basis functions of the sound
sources that we are interested in separating from a given training database. This corre-
sponds to the prior information necessary to successfully separate the signals. We assume
two different types of generative models in the observed single channel mixture as well as
in the original sources. The first one is depicted in Figure 1-A. As described in Equation
1, at every �>=@?BA � !DC the observed instance is assumed to be a weighted sum of different
sources. In our approach only the case of � �FE is regarded. This corresponds to the situ-



ation defined in Section 1 in that two different signals are mixed and observed in a single
sensor.

For the individual source signals, we adopt a decomposition-based approach as another
generative model. This approach was employed formerly in analyzing sound sources [7, 8]
by expressing a fixed-length segment drawn from a time-varying signal as a linear super-
position of a number of elementary patterns, called basis functions, with scalar multiples
(Figure 1-B). Continuous samples of length � with ��� ! are chopped out of a source,
from � to �  � 9 A , and the subsequent segment is denoted as an � -dimensional column
vector in a boldface letter, � � � � ? 
 � � 
 ��� �� ��� � 
 �����	� �� C�
 , attaching the lead-off sample
index for the superscript and representing the transpose operator with 
 . The constructed
column vector is then expressed as a linear combination of the basis functions such that

� � � � �
)�� � + �*) ( � �*) ��� ��� � � � (2)

where � is the number of basis functions, + � ) is the � ��� basis function of  ��� source
in the form of � -dimensional column vector, ( � �*) its coefficient (weight) and � � � �
? ( � � � ( � � � � ��� ( � � � C 
 . The r.h.s. is the matrix-vector notation. The second subscript � followed
by the source index  in ( � �*) represents the component number of the coefficient vector � � � .
We assume that � � � and � has full rank so that the transforms between � � � and � � � be
reversible in both directions. The inverse of the basis matrix, � � ��� � �� , refers to the ICA
filters that generate the coefficient vector: � � � � � � � � � . The purpose of this decomposition
is to model the multivariate distribution of � � � in a statistically efficient manner. The ICA
learning algorithm is equivalent to searching for the linear transformation that make the
components as statistically independent as possible, as well as maximizing the marginal
densities of the transformed coordinates for the given training data [10],

���� ������� �!� 6"$#&%
�
' � -(� � � : � � 0 ���)�*� �!� 6"+#,%

�
% ) ' � -/( � �*) 0 � (3)

where
' � -.- 0 denotes the probability of the value of a variable - . Independence between

the components and over time samples factorizes the joint probabilities of the coefficients
into the product of marginal ones. What matters is therefore how well matched the model
distribution is to the true underlying distribution of

' � - ( � � ) 0 . The coefficient histogram
of real data reveals that the distribution has a highly sharpened point at the peak with a
long tail (Figure 1-C). Therefore we use a generalized Gaussian prior [9] that provides an
accurate estimate for symmetric non-Gaussian distributions by fitting the exponent / in the
set of parameters 0 in its simplest form

,.-/(�: 0 0 2 476!821 943333
(D9+56 3333

<�7 � 0 �98 5 � 6 � /;: (4)

where 5 �=< ? (7C , 6 �?> @ ? (7C , and , -(- 0 is a realized pdf of variable - and should be noted
distinctively with

' � -(- 0 . With the generalized Gaussian ICA learning algorithm [9], the
basis functions and their individual parameter set 0 �*) are obtained beforehand and used as
prior information for the following source separation algorithm.

3 Separation Algorithm

The method is motivated by the pdf approximation property of ICA transformation (Equa-
tion 3). The probability of the source signals is computed by the generalized Gaussian
parameters in the transformed domain, and the method performs maximum a posteriori
(MAP) estimation in a number of adaptation steps on the source signals to maximize the
data likelihood. Scaling factors of the generative model are learned as well.



3.1 MAP estimation of Source Signals

We have demonstrated that the learned basis filters maximize the likelihood of the given
data. Suppose we know what kind of sound sources have been mixed and we were given
the set of basis filters from a training set. Could we infer the learning data? The answer is
generally “no” when ��� ! and no other information is given. In our problem of single
channel separation, half of the solution is already given by the constraint � � ��� � 
 � �  � � 
 � � ,
where 
 � � constitutes the basis learning data � � � (Figure 1-B). Essentially, the goal of the
source inferring algorithm presented in this paper is to complement the remaining half with
the statistical information given by a set of coefficient density parameters 0 �*) . If model
parameters are given, we can perform maximum a posteriori (MAP) estimation simply by
optimizing the data likelihood computed by the model parameters.

At every time point a segment � � � � ? 
 � � � ��� 
������	� �� C 
 generates the independent coefficient
vector � � � � � � � � � and � � � � � � � � � respectively. The likelihood of � � � is' � -�� � � : � � 0��� ,.- � � � : � � 0 :�� 4�� � � : � (5)

where , -�	 0 is the generalized Gaussian density function, and � � � 0 ��
 ������ � — parame-
ter group of all the coefficients, with the notation ‘  � ����� ’ meaning an ordered set of the
elements from index  to � . Assuming the independence over time, the probability of the
whole signal 


������� �� is obtained from the marginal ones of all the possible segments,

' � - 
 ������ �� : � � 0 �
���
%
� � � ' � -(� � � : � � 0 �� ���

%
� � � ,.- � � � : � � 0 :�� 4�� � � : � (6)

where, for convenience, ! � � ! 9 �  A . The objective function to be maximized is the
multiplication of the data likelihoods of both sound sources, and we denote its log by � :� � ��� � ' � - 
 ������� �� : � � 0 ' � - 
 ������� �� : � � 0�� � �

� � �
� ���)� ,.- � � � : � � 0  ���)� ,.- � � � : � � 0��

 ! � ��� � :�� 4�� � � : :�� 4�� � � : � (7)

Our interest is in adapting 
 � � and 
 � � for �	� = ?BA � !DC , toward the maximum of � . We
introduce a new variable  �� � � � 
 � � , a scaled value of 
 � � with the contribution factor. The
adaptation is done on the values of  �� instead of 
 � � , in order to infer the sound sources and
their contribution factors simultaneously. The learning rule is derived in a gradient-ascent
manner by summing up the gradients of all the segments where the sample lies:! �!  �� � �" � � 1 !!  �� ��� � , - � �$#� : � � 0  !!  �� ��� � , - � �$#� : � � 0 7

� �" � � % �)�� �'&)( -/( �$#� ) 0�* � ) "� �,+ 9
�
)�� �)&'( - ( �$#� ) 0-* � ) "� �.+0/

2 �" � � % ��� �
)�� �1( - ( � #� ) 0 * � ) " 9 � � �)�� �2( -/( � #� ) 0 * � ) " / � (8)

which is derived by the fact that 3�465 #7398 5 � 3;:=< 7�> 5 #@?3BA 5 3BA 53B8 5 �DC 7 #E and 398GF398H � 3;:�I � 8 H ?3B8JH � 9 A ,
where � " � � 9LK  A , ( -/( 0 � 3NM OGPRQ�:�4�S T ?3B4 , and * �*) " � � � -.� � K 0 . Note that the gradient
of � for  � , ! �VU !  � � 9 ! �WU !  � , always makes the condition � �  �   � satisfy,
so learning rule on either  � or  � subsumes the counterpart. The overall process of the
proposed method is summarized as 4 steps in Figure 2. The figure shows one iteration of
the adaptation of each sample.
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Figure 2: The overall structure of the proposed method. We are given single channel
data ] � , and we have the estimates of the source signals, ^
 � � , at every adaptation step.
(A) 
 � �`_ ( � �*) : At each timepoint, the current estimates of the source signals are passed
through basis filters � � , generating � sparse codes ( � �*) that are statistically independent.
(B) ( � �*) _ba ( � � ) : The stochastic gradient for each code is obtained by taking derivative of
log-likelihood. (C) a ( � �*) _ca 
 � � : The gradient is transformed to the source domain. (D)
The individual gradients are combined to be added to the current estimates of the source
signals.

3.2 Estimating � � and � �

Updating the contribution factors � � can be accomplished by simply finding the maximum
a posteriori values. To simplify the inferring steps, we force the sum of the factors to be
constant: e.g. � �  ��� � A . Then ��� is completely dependent on � � as ��� � A 9 � � , and
we need to consider � � only. Given the basis functions � � and the current estimate of the
sources 


������� �� , the posterior probability of � � is' � - � � : 
 ������ �� � 
 ������ �� � � � � � � 0 2 ' � - 
 ������� �� : � � 0 ' � - 
 ������ �� : � � 0 , E - � � 0 � (9)

where , E -�	 0 is the prior density function of � � . The value of � � maximizing the posterior
probability also maximizes its log,

� �� � ����� �!� 6E H 8 �  ��� � , E - � � 0 : � (10)

where � is the log-likelihood of the estimated sources defined in Equation 7. Assuming
that � � is uniformly distributed,

! 8 �  ���)� , E - � � 0 :�U ! � � � ! �WU ! �	� , which is calculated
as ! �! � � � 9

d �
� � � 

d �
� �� � where

d � � ���
� � �

�
)�� �2( - ( � � ) 0�e � )gf � � (11)

derived by the chain rule! ���)� ,.-/( � �*) 0! � � �
! ���)� ,.-/( � � ) 0! ( � �*) ! ( � � )! � � � ( - ( � � ) 0 	 e � ) f � �ih 9 A

� ��kj � (12)

Solving equation
! �WU ! � � �ml subject to � �  ��� � A and � � � ��� = ? l � A C gives

� �� � > : d � :> : d � :  > : d � : � � �� � > : d � :> : d � :  > : d � : � (13)

These values guarantee the local maxima of � w.r.t. the current estimates of source signals.
The algorithm updates the contribution factors periodically during the learning steps.
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Figure 3: Waveforms of four sound sources, examples of the learned basis functions (5 were
chosen out of 64), and the corresponding coefficient distributions modeled by generalized
Gaussians. The full set of basis functions is available at the website also.
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4 Experiments and Discussion

We have tested the performance of the proposed method on the single channel mixtures of
four different sound types. They were monaural signals of rock and jazz music, male and
female speech. We used different sets of speech signals for learning basis functions and for
generating the mixtures. For the mixture generation, two sentences of the target speakers
‘mcpm0’ and ‘fdaw0’, one for each, were selected from the TIMIT speech database. The
training set consisted of 21 sentences for each gender, 3 for each of randomly chosen 7
males (or females) from the same database excluding the 2 target speakers. Rock music
was mainly composed of guitar and drum sounds, and jazz was generated by a wind in-
strument. Vocal parts of both music sounds were excluded. All signals were downsampled
to 8kHz, from original 44.1kHz (music) and 16kHz (speech) data. The training data were
segmented in 64 samples (8ms) starting at every sample. Audio files for all the experiments
are accessible at the website1.

Figure 3 displays the actual sources, adapted basis functions, and their coefficient distribu-
tions. Music basis functions exhibit consistent amplitudes with harmonics, and the speech
basis functions are similar to Gabor wavelets. Figure 4 compares 4 sources by the average
spectra. Each covers all the frequency bands, although they are different in amplitude. One
might expect that simple filtering or masking cannot separate the mixed sources clearly.

Before actual separation, the source signals were initialized to the values of mixture signal:
 � � � � � , and the initial � � were all l � � to satisfy Equation 1. The adaptation was repeated
more than 300 steps on each sample, and the scaling factors were updated every 10 steps.
Table 1 reports the signal-to-noise ratios (SNRs) of the mixed signal ( � � ) and the recovered
results ( ^ �� ) with the original sources (  �� � � � 
 � � ). In terms of total SNR increase the
mixtures containing music were recovered more cleanly than the male-female mixture.
Separation of jazz music and male speech was the best, and the waveforms are illustrated

1 http://speech.kaist.ac.kr/˜jangbal/ch1bss/
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Figure 5: Separation result for the mixture of jazz music and male speech. In the vertical
order: original sources (  � and  � ), mixed signal (  �   � ), and the recovered signals.

in Figure 5. We conjecture by the average spectra of the sources in Figure 4 that although
there exists plenty of overlap between jazz and speech, the structures are dissimilar, i.e. the
frequency components of jazz change less, so we were able to obtain relatively good SNR
results. However rock music exhibits scattered spectrum and less characteristical structure.
This explains the relatively poorer performances of rock mixtures.

It is very difficult to compare a separation method with other CASA techniques, because
their approaches are so different in many ways that an optimal tuning of their parameters
would be beyond the scope of this paper. However, we compared our method with Wiener
filtering [4], that provides optimal masking filters in the frequency domain if true spectro-
gram is given. So, we assumed that the other source was completely known. The filters
were computed every block of 8 ms (64 samples), 0.5 sec, and 1.0 sec. In this case, our
blind results were comparable in SNR with results obtained when the Wiener filters were
computed at 0.5 sec.

In summary, our method has several advantages over traditional approaches to signal sep-
aration. They involve either spectral techniques [5, 6] or time-domain nonlinear filtering
techniques [3, 4]. Spectral techniques assume that sources are disjoint in the spectrogram,
which frequently result in audible distortions of the signal in the region where the assump-
tion mismatches. Recent time-domain filtering techniques are based on splitting the whole
signal space into several disjoint subspaces. Although they overcome the limit of spectral
representation, they consider second-order statistics only, such as autocorrelation, which
restricts the separable cases to orthogonal subspaces [4].

Our method avoids these strong assumptions by utilizing a prior set of basis functions that
captures the inherent statistical structures of the source signal. This generative model there-
fore makes use of spectral and temporal structures at the same time. The constraints are
dictated by the ICA algorithm that forces the basis functions to result in an efficient rep-
resentation, i.e. the linearly independent source coefficients; and both, the basis functions

Table 1: SNR results. � R, J, M, F � stand for rock, jazz music, male, and female speech. All the
values are measured in dB. ‘Mix’ columns are the sources that are mixed to � , and ‘ �����	� # ’s are the
calculated SNR of mixed signal ( � ) and recovered sources ( 
�� ) with the original sources ( ������������� ).

Mix snr � H snr � F Total Mix snr � H snr � F Total� ��� � ��� inc. � ��� � ��� inc.

R + J -3.7 3.3 3.7 7.0 10.3 J + M 0.1 5.6 -0.1 5.5 11.1
R + M -3.7 3.1 3.7 6.8 9.9 J + F -0.1 5.1 0.1 5.3 10.4
R + F -3.9 2.2 3.9 6.1 8.3 M + F -0.2 2.5 0.2 2.7 5.2



and their corresponding pdf are key to obtaining a faithful MAP based inference algorithm.
An important question is how well the traing data has to match the test data. We have also
performed experiments with the set of basis functions learned from the test sounds and the
SNR decreased on average by 1dB.

5 Conclusions

We presented a technique for single channel source separation utilizing the time-domain
ICA basis functions. Instead of traditional prior knowledge of the sources, we exploited
the statistical structures of the sources that are inherently captured by the basis and its
coefficients from a training set. The algorithm recovers original sound streams through
gradient-ascent adaptation steps pursuing the maximum likelihood estimate, contraint by
the parameters of the basis filters and the generalized Gaussian distributions of the fil-
ter coefficients. With the separation results, we demonstrated that the proposed method
is applicable to the real world problems such as blind source separation, denoising, and
restoration of corrupted or lost data. Our current research includes the extension of this
framework to perform model comparision to estimate which set of basis functions to use
given a dictionary of basis functions. This is achieved by applying a variational Bayes
method to compare different basis function models to select the most likely source. This
method also allows us to cope with other unknown parameters such the as the number of
sources. Future work will address the optimization of the learning rules towards real-time
processing and the evaluation of this methodology with speech recognition tasks in noisy
environments, such as the AURORA database.
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