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Abstract

The problem of extracting the relevant aspects of data, in face of multiple
conflicting structures, is inherent to modeling of complex data. Extract-
ing structure in one random variable that is relevant for another variable
has been principally addressed recently via the information bottleneck
method [15]. However, such auxiliary variables often contain more in-
formation than is actually required due to structures that are irrelevant
for the task. In many other cases it is in fact easier to specify what is
irrelevant than what is, for the task at hand. Identifying the relevant
structures, however, can thus be considerably improved by also mini-
mizing the information about another, irrelevant, variable. In this paper
we give a general formulation of this problem and derive its formal, as
well as algorithmic, solution. Its operation is demonstrated in a synthetic
example and in two real world problems in the context of text categoriza-
tion and face images. While the original information bottleneck problem
is related to rate distortion theory, with the distortion measure replaced
by the relevant information, extracting relevant features while removing
irrelevant ones is related to rate distortion with side information.

1 Introduction

A fundamental goal of machine learning is to find regular structures in a given empirical
data, and use it to construct predictive or comprehensible models. This general goal, unfor-
tunately, is very ill defined, as many data sets contain alternative, often conflicting, under-
lying structures. For example, documents may be classified either by subject or by writing
style; spoken words can be labeled by their meaning or by the identity of the speaker; pro-
teins can be classified by their structure or function - all are valid alternatives. Which of
these alternative structures is “relevant” is often implicit in the problem formulation.

The problem of identifying “the” relevant structures is commonly addressed in supervised
learning tasks, by providing a “relevant” label to the data, and selecting features that are
discriminative with respect to this label. An information theoretic generalization of this su-
pervised approach has been proposed in [9, 15] through the information bottleneck method
(IB). In this approach, relevance is introduced through another random variable (as is the
label in supervised learning) and the goal is to compress one (the source) variable, while
maintaining as much information about the auxiliary (relevance) variable. This framework



has proven powerful for numerous applications, such as clustering the objects of sentences
with respect to the verbs [9], documents with respect to their terms [1, 6, 14], genes with
respect to tissues [8, 11], and stimuli with respect to spike patterns [10].

An important condition for this approach to work is that the auxiliary variable indeed cor-
responds to the task. In many situations, however, such “pure” variable is not available.
The variable may in fact contain alternative and even conflicting structures. In this paper
we show that this general and common problem can be alleviated by providing “negative
information”, i.e. information about “unimportant”, or irrelevant, aspects of the data that
can interfere with the desired structure during the learning.

As an illustration, consider a simple nonlinear regression problem. Two variables = and y
are related through a functional formy = f(z) + &, where f(x) is in some known function
class and £ is noise with some distribution that depends on z. When given a sample of
(z,y) pairs with the goal of extracting the relevant dependence y = f(x), the noise ¢ -
which may contain information on z and thus interfere with extracting y - is an irrelevant
variable. Knowing the joint distribution of (x,&) can of course improve the regression
result.

A more “real life” example can be found in the analysis of gene expression data. Such
data, as generated by the DNA-chips technology, can be considered as an empirical joint
distribution of gene expression levels and different tissues, where the tissues are taken from
different biological conditions and pathologies. The search for expressed genes that testify
for the existence of a pathology may be obscured by genetic correlations that exist also in
other conditions. Here again a sample of irrelevant expression data, taken for instance from
a healthy population, can enable clustering analysis to focus on the pathological features
only, and ignore spurious structures.

These two examples, and numerous others, are all instantiations of a common problem: in
order to better extract the relevant structures information about the irrelevant components
of the data should be incorporated. Naturally, various solutions have been suggested to this
basic problem in many different contexts (e.g. spectral subtraction, weighted regression
analysis). The current paper presents a general unified information theoretic framework for
such problems, extending the original information bottleneck variational problem to deal
with discriminative tasks of that nature, by observing its analogy with rate distortion theory
with side information.

2 Information Theoretic Formulation

To formalize the problem of extracting relevant structures consider first three categorical
variables X, Y+ and Y~ whose co-occurrence distributions are known. Our goal is to un-
cover structures in P(X,Y ™), that do not exist in P(X,Y ~). The distribution P(X;Y )
may contain several conflicting underlying structures, some of which may also exist in
P(X,Y ). These variables stand for example for a set of terms X, a set of documents
Y+ whose structure we seek, and an additional set of documents Y ~, or a set of genes
and two sets of tissues with different biological conditions. In all these examples Y+ and
Y~ are conditionally independent given X. We thus make the assumption that the joint
distribution factorizes as: p(z,y*,y™) = p(z)p(y*|z)p(y~|z).

The relationship between the variables can be expressed by a Venn diagram (Figure 1A),
where the area of each circle corresponds to the entropy of a variable (see e.g. [2]
p.20 and [3] p.50 for discussion of this type of diagrams) and the intersection of two
circles corresponds to their mutual information. The mutual information of two ran-
dom variables is the familiar symmetric functional of their joint distribution, I(X;Y") =

Zw,y p(z,y)log (pz()a(gz’)%;)) ’
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Figure 1: A. A Venn diagram illustrating the relations between the entropy and mutual in-
formation of the variables X ,Y*,Y . The area of each circle corresponds to the entropy of
a variable, while the intersection of two circles corresponds to their mutual information. As
Y+ and Y~ are independent given X, their mutual information vanishes when z is known,
thus all their overlap is included in the circle of X. B. A graphical model representation of
IB with side information. Given the three variables X,Y'+,Y —, we seek a compact stochas-
tic representation 7" of X which preserves information about Y+ but removes information
about +Y ~. In this graph Y+ and Y~ are indeed conditionally independent given X.

To identify the relevant structures in the joint distribution p(x,y*), we aim to extract a
compact representation of the variable X with minimal loss of mutual information about
the relevant variable Y+, and at the same time with maximal loss of information about
the irrelevance variable Y—. The goal of information bottleneck with side information
(IBSI) is therefor to find a stochastic map of X to a new variable T', p(t|z), in a way that
maximizes its mutual information with Y+ and minimizes the mutual information about
Y ~. In general one can achieve this goal perfectly only asymptotically and the finite case
leads to a sub optimal compression, an example of which is depicted in the blue region in
figure 1. These constrains can be cast into a single variational functional,

£=I(X;T) = B [I(T;Y+) = I(T;Y7)] (1)

where the Lagrange parameter 3 determines the tradeoff between compression and infor-
mation extraction while the parameter ~ determines the tradeoff between preservation of
information about the relevant Y+ variable and loss of information about the irrelevant one
Y ~. In some applications, such as in communication, the value of v may be determined by
the relative cost of transmitting the information about Y~ by other means.

The information bottleneck variational problem, introduced in [15], is a special case of
our current variational problem with v = 0, namely, no side or irrelevant information is
available. In that case only the distributions p(t|z), p(t) and p(y ™ |t) are determined.

3 Solution Char acterization

The complete Lagrangian of this constrained optimization problem is given by
Llp(t}2)] = I(X;T) = B [I(T;Y ) =4 I(T;Y )] = Y A@) Y _pltle) ()
T t

where A(z), are the normalization Lagrange multipliers. Here, the minimization is per-
formed with respect to the stochastic mapping p(t|x), taking into account its probabilis-
tic relations to p(t), p(y™|t) and p(y~). Interestingly, performing the minimization over
p(t|z); p(t); p(yT|t); p(y~|t) as independent variables leads to the same solution of self-
consistent equations.



Proposition 1 The extrema of £ obey the following self consistent equations
p(tlz) = I%e(—ﬁ(DKL[p(y+\w)||p(y+|t)]—7DKL[p(y' 12)[lp(y~[8)])) 3)

p(t) = Y p(tlx)p(z)
() = ﬁ;p(yﬂw)p@mp(x)
Pyt = ﬁ;p(y-mp(tmp(x)

where Z = p(t) 32, exp {=B (Dxr [p(y™* |2)[Ip(y ™ [t)] — ¥Dxr [p(y~|2)lIp(y~ [])} is
a normalization factor and Dk, [p||q] = >_, p(x) log % is the Kullback-Leibler diver-
gence[2],

Proof:
Following the Markovian relation p(y|z, t) = p(y|z), we write p(y,t) = > p(y, t|z)p(x)
=, pylt, x)p(t|z)p(x) = >, p(y|x)p(t|z)p(x) and obtain for the second term of Eq. 3

0 : _ py*t)
T = iy 3 L LA ptieln og (201

= p(@) Y p(y*Ie)log (p@*'t) p<y+|:v))

(4)

p(ytlz) ply™)

= —p(@)Dxz [p(y*|2)|lp(y™[1)] + p(2)Dxr [p(y™ |2)lIp(y™)] -
Similar differentiation for the other terms yield
O p_ peyiog (202)
st = 7o (%) ©
—p(@)B8 (D [p(y™ @)™ 1t)] + vDxr [p(y~|2) [Py~ [1)])
+p(@)A(z,y",y7)

where A(z, y+,y7) = 2 + 8 (Dxz [p(y* |2)|Ip(y+)] — vDxcr [p(y~ |2)|Ip(y 7)),

holds all terms independent of ¢. Equating the derivative to zero then yields the first equa-
tion of proposition 1. []

The formal solutions of the above variational problem have an exponential form which is a
natural generalization of the solution of the original IB problem. As in the original IB, when
B goes to infinity the Lagrangian reduces to I(T;Y+) — vI(T;Y ~), and the exponents
collapse to a hard clustering solution, where p(t|z) become binary cluster membership
probabilities.

Further intuition about the operation of IBSI can be obtained by rewriting the second
term in Eq. 2, I(T;¥+) = (T;Y7) = X, 5,0 5, p(ty™,y7) log (2L9) —
- + -7

TS Sy Sy plty oy ) log (BE) = (los (S 55 )) o FOr
~ = 1 and a fixed level of I(X;T), IBSI thus operates to extract a compact representa-
. .o . . . p(y+|t) .
tion T" that maximizes the mean log likelihood ratio <10g (p(y_ ‘t)) >p(t,y+,y_), measuring
the discriminability between the distribution of p(y ™ |t) and p(y~|¢t).




The above setup can be extended to the case of multiple variables on which multi-
information should be preserved {y;, ..., 53+ } and variables on which multi-information

should be removed {y;, ...,y - }, as discussed in [8]. This yields
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which can be solved together with the other self-consistent conditions, similarly to Eq. 4.

4 Relation to Rate Distortion Theory with Side Information

The problem formulated above is related to the theory of rate distortion with side informa-
tion ([17],[2] p. 439). In rate distortion theory (RDT) a source variable X is stochastically
encoded into a variable T, which is decoded at the other side of the channel with some
distortion. The achievable code rate, R at a given distortion level D, is bounded by the
optimal rate, also known as the rate distortion function, R(D). The optimal encoding is
determined by the stochastic map p(t|z), where the representation quantization is found by
minimizing the average distortion. For the optimal code I(X;T) = R(D).

This rate can be improved by utilizing side information in the form of another variable, W,
that is known at both ends of the channel. In this case, an improved rate can be achieved by
avoiding sending information about X that can be extracted from 1. Indeed, in this case
the rate distortion function with this side information has a lower lower-bound, given by
R(D) = I(X;T)—I(T; W), where T is the optimal quantization of X in this case, under
the distortion constraint (see [17] for details). In the information bottleneck framework the
average distortion is replaced by the mutual information about the relevant variable, while
the rate-distortion function is turned into a convex curve that characterizes the complexity
of the relation between the variables, (see [15, 13]).

Similarly, IBSI avoids differentiating instances of X that are informative about Y+ if they
contain information also about Y —. The variable Y~ is analogous to the side information
variable W, while YT is just the “informative” Y of the original 1B. While the formal
analogy between these problems helps in their mathematical formulation, it is important to
emphasize that these are very different problems both in motivation and scope. Whereas
RDT with side information is a specific communication problem with some given (often
arbitrary) distortion function, our problem is a general statistical non-parametric analysis
technique that depends solely by the choice of the variables X, Y+ and Y ~. Many differ-
ent pattern recognition and discriminative learning problems can be cast into this general
information theoretic framework - far beyond the original setting of RDT with side infor-
mation.

5 Algorithms

The set of self-consistent equations (Eq. 4), can be solved by iterating the equations, given
initial distributions, similar to the algorithm presented for the IB [15, 8], with similar con-
vergence proofs. Unlike the original IB equations, convergence of the algorithm is no
longer allways guaranteed, simply because the problem is not guaranteed to have feasible
solutions for all v values. However, there exist a non empty set of « values for which this
algorithm is guaranteed to converge.

As in the case of IB, various heuristics can be applied, such as deterministic annealing -
in which increasing the parameter 3 is used to obtain finer clusters; greedy agglomerative
hard clustering [13]; or a sequential K-means like algorithm [12]. The latter provides a
good compromise between top-down annealing and agglomerative greedy approaches and



achieves excellent performance. This is the algorithm we adopted in this paper, modifying
the algorithm detailed in [12], by using a target function F = —1I(T; X) — I(T;Y+) +
~I(T;Y ™).

6 Applications

We describe two applications of our method: a simple synthetic example, and a “real world”
problem of hierarchical text categorization. We also used IBSI to extract relevant features
in face images, but these results will be published elsewhere due spavce considerations.

6.1 A synthetic example

To demonstrate the ability of our approach to uncover weak but interesting hidden struc-
tures in data, we designed a co-occurrences matrix contains two competing sub-structures
(see figure 2A). For demonstration purposes, the matrix was created such that the stronger
structure can be observed on the left and the weaker structure on the right. Compressing X
into two clusters while preserving information on Y+ using IB (y = 0), yields the cluster-
ing of figure 2B, in which the upper half of z’s are all clustered together. This clustering
follows from the strong structure on the left of 2A.

We now created a second co-occurrence matrix, to be used for identifying the relevant struc-
ture, in which each half of X yield similar distributions P(y~|z). Applying sequential-
IBSI now successfully ignores the strong but irrelevant structure in P(Y , X) and retrieves
the weak structure. Importantly, this is done in an unsupervised manner, without explicitly
pointing to the strong but irrelevant structure.

This example was designed for demonstration purposes, thus the irrelevant structures is
strongly manifested in P(X; Y ). The next example shows that our approach is also useful
for real data, in which structures are much more covert.

A. B. C. D.
P(X,Y™) P(X,T) P(X,Y) P(X,T)
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Figure 2: Demonstration of IBSI operation. A. A joint distribution P(X,Y *) that con-
tains two distinct and conflicting structure. B. Clustering X into two clusters using the
information bottleneck method separates upper and lower values of X, according to the
stronger structure. C. A joint distribution P(X,Y ~) that contains a single structure, sim-
ilar in nature to the stronger structure P(X,Y ). D. Clustering X into two clusters using
IBSI successfully extract the weaker structure in P(X,Y ).
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Figure 3: A. An illustration of the 20 newsgroups hierarchical data we used. B. Catego-
rization accuracy vs. no of word clusters k. N = 100.1B dashed line. IBSI solid line.

6.2 Hierarchical text categorization

Text categorization is a fundamental task in information retrieval. Typically, one has to
group a large set of texts into groups of homogeneous subjects. Recently, Slonim and
colleagues showed that the 1B method achieves categorization that predicts manually pre-
defined categories with great accuracy, and largely outperforms competing methods [12].
Clearly, this unsupervised task becomes more difficult when the texts have similar subjects,
because alternative categories are extracted instead of the “correct” one.

This problem can be alleviated by using side information in the form of additional docu-
ments from other categories. This is specifically useful in hierarchical document catego-
rization, in which known categories are refined by grouping documents into sub-categories.
[4, 16]. IBSI can be applied to this problem by operating on the terms-documents co-
occurrence matrix while using the other top-level groups for focusing on the relevant struc-
tures. To this end, IBSI is used to identify clusters of terms that will be later used to cluster
a group of documents into its subgroups,

While IBSI is targeted at learning structures in unsupervised manner, we have chosen to
apply it to a labelled dataset of documents in order to be able to measure how its results
agree with manual classification. Labels are not used by our algorithms during learning
and serve only to quantify the performance. We used the 20 Newsgroups database col-
lected by [7] preprocessed as described in [12]. This database consists of 20 equal sized
groups of documents, hierarchically organized into groups according to their content (fig-
ure 3A). We aimed to cluster documents that belong to two newsgroups from the super-
group of computer documents and have very similar subjects comp.sys.ibm.pc.hardware
and comp.sys.mac.hardware. As side information we used all documents from the super
group of science ( sci.crypt, sci.electronics, sci.med, sci.space).

To demonstrate the power of IBSI we used double clustering to separate documents into two
groups. The goal of the first clustering phase is to use IBSI to identify clusters of terms that
extract the relevant structures of the data. The goal of the second clustering phase is simply
to provide a quantitative measure for the quality of the features extracted in the first phase.
We therefor performed the following procedure: First, the most frequent 2000 words in
these documents were clustered into IV clusters using IBSI. Then, word clusters were sorted
by asingle-cluster score D g1, [p(y ™ |t)||p(y )] =YDk r[p(y~ |t)||p(y )], and the k clusters
with the highest score were chosen. These word-clusters were then used for clustering
documents. The performance of this process is evaluated by measuring the overlap of the
resulting clusters with the manualy classified groups. Figure 3, plots document-clustering
accuracy for N = 100, as a function of k. IBSI (v = 1) is compared with the IB method
(i.e. v = 0). Using IBSI successfully improves mean clustering accuracy from about 55
percent to about 63 percents.



7 Discussion and Further Research

We have presented an information theoretic approach for extracting relevant structures from
data, by utilizing additional data known to share irrelevant structures with the relevant data.
Naturally, the choice of side data may considerably influence the solutions obtained with
IBSI, simply because using different irrelevant variables, is equivalent to asking different
questions about the data analysed. In practice, side data can be naturally defined in numer-
ous applications, in particular in exploratory analysis of scientific experiments, e.g. when
searching for features that characterize a disease but not healthy subjects.

While the current work is based on clustering to compress the source, the notion of extract-
ing relevance through side information can be extended to other forms of dimentionality
reduction, such as non-linear embedding on low dimensional manifolds. In particular side
information can be naturally combined with information theoretic modeling approaches
such as SDR [5]. Our preliminary results with this approach were found very promissing.
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