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ABSTRACT 

A new learning algorithm, Learning by Choice of Internal Rep
resetations (CHIR), was recently introduced. Whereas many algo
rithms reduce the learning process to minimizing a cost function 
over the weights, our method treats the internal representations as 
the fundamental entities to be determined. The algorithm applies 
a search procedure in the space of internal representations, and a 
cooperative adaptation of the weights (e.g. by using the perceptron 
learning rule). Since the introduction of its basic, single output ver
sion, the CHIR algorithm was generalized to train any feed forward 
network of binary neurons. Here we present the generalised version 
of the CHIR algorithm, and further demonstrate its versatility by 
describing how it can be modified in order to train networks with 
binary (±1) weights. Preliminary tests of this binary version on 
the random teacher problem are also reported. 

I. INTRODUCTION 

Learning by Choice oflnternal Representations (CHIR) was recently introduced 
[1,11] as a training method for feed forward networks of binary units. 

Internal Representations are defined as the states taken by the hidden units 
of a network when patterns (e.g. from the training set) are presented to the input 
layer of the network. The CHIR algorithm views the internal representations associ
ated with various inputs as the basic independent variables of the learning process. 
Once such representations are formed, the weights can be found by simple and local 
learning procedures such as the Percept ron Learning Rule (PLR) [2]. Hence the 
problem of learning becomes one of searching for proper internal representations, 



The CHIR Algorithm for Feed Forward Networks with Binary Weights 517 

rather than of minimizing a cost function by varying the values of weights, which 
is the approach used by back propagation (see, however [3],[4] where "back prop
agation of desired states" is described). This basic idea, of viewing the internal 
representations as the fundamental entities, has been used since by other groups [5-
7]. Some of these works, and the main differences between them and our approach, 
are briefly disscussed in [11]. One important difference is that the CHIR algorithm, 
as well as another similar algorithm, the MRII [8], try to solve the learning problem 
for a fixed architecture, and are not guaranteed to converge. Two other algorithms 
[5,6] always find a solution, but at the price of increasing the network size during 
learning in a manner that resembles similar algorithms developed earlier [9,10]. An
other approach [7] is to use an error minimizing algorithm which treat~ the internal 
representations as well as the weights as the relevant variables of the search space. 

To be more specific, consider first the single layer perceptron with its Percep
tron Learning Rule (PLR) [2]. This simple network consists of N input (source) 
units j, and a single target unit i. This unit is a binary linear threshold unit, i.e. 
when the source units are set in anyone of Jl = 1, .. M patterns, i.e. Sj = ef, the 
state of unit i, Si = ±1 is determined according to the rule 

Si = sign(L WijSj + 0i) . 
j 

(1) 

Here Wij is the (unidirectional) weight assigned to the connection from unit j to 
ij 0i is a local bias. For each of the M input patterns, we require that the target 
unit (determined using (1)) will take a preassigned value er. Learning takes place 
in the course of a training session. Starting from any arbitrary initial guess for the 
weights, an input v is presented, resulting in the output taking some value Sf. Now 
modify every weight according to the rule 

(2) 

where TJ > 0 is a step size parameter (ej = 1 is used to modify the bias 0). Another 
input pattern is presented, and so on, until all inputs draw the correct output. The 
Perceptron convergence theorem states [2] that the PLR will find a solution (if one 
exists), in a finite number of steps. Nevetheless, one needs, for each unit, both the 
desired input and output states in order to apply the PLR. 

Consider now a two layer perceptron, with N input, H hidden and J{ output 
units (see Fig.1). The elements of the network are binary linear threshold units i, 
whose states Si = ±1 are determined according to (1). In a typical task for such 
a network, M specified output patterns, Sf'-,t,1J. = efut,lJ., are required in response 
to Jl = 1, ... , M input patterns. If a solution is found, it first maps each input onto 
an internal representation generated on the hidden layer, which, in turn, produces 
the correct output. Now imagine that we are not supplied with the weights that 
solve the problem; however the correct internal representations are revealed. That 
is, we are given a table with M rows, one for each input. Every row has H bits ef'lJ. I 
for i = 1..H, specifying the state of the hidden layer obtained in response to input 
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pattern 1'. One can now view each hidden-layer cell i as the target of the PLR, 
with the N inputs viewed as source. Given sufficient time, the PLR will converge 
to a set of weights Wii' connecting input unit j to hidden unit i, so that indeed 
the input-hidden association that appears in column i of our table will be realized. 
In order to obtain the correct output, we apply the PLR in a learning process that 
uses the hidden layer as source and each output unit as a target, so as to realize 
the correct output. In general, however, one is not supplied with a correct table of 
internal representations. Finding such a table is the goal of our approach . 

... 0 
Figure 1. A typical three layered feed forward network (two layered percep

tron) with N input, H hidden and I( output units. The unidirectional weight Wij 
connects unit j to unit i. A layer index is implicitely included in each unit's index. 

During learning, the CHIR algorithm alternates between two phases: in one it 
generates the internal representations, and in the other it uses the updated repre
sentations in order to search for weights, using some single layer learning rule. This 
general scheme describes a large family of possible algorithms, that use different 
ways to change the internal representations. and update the weights. 

A simple algorithm based on this general scheme was introduced recently [1,11]. 
In section II we describe the multiple output version of CHIR [11]. In section III we 
present a way to modify the algorithm so it can train networks with binary weights, 
and the preliminary results of a few tests done on this new version. In the last 
section we shortly discuss our results and describe some future directions. 
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II. THE CHIR ALGORITHM 

The CHIR algorithm that we describe here implements the basic idea of learn
ing by choice of internal representations by breaking the learning process into four 
distinct procedures that are repeated in a cyclic order: 

1. SETINREP: Generate a table of internal representations {ef''''} by presenting 
each input pattern from the training set and recording the states of the hidden 
units, using Eq.(l), with the existing couplings Wij and 0i. 

2. LEARN23: The current table of internal representations is used as the training 
set, the hidden layer cells are used as source, and each output as the target unit 
of the PLR. If weights Wij and 0i that produce the desired outputs are found, the 
problem has been solved. Otherwise stop after 123 learning sweeps, and keep the 
current weights, to use in CHANGE INREP. 

3. CHANGE INREP: Generate a new table of internal representations, which 
reduces the error in the output : We present the table sequentially, row by row 
(pattern by pattern), to the hidden layer. If for pattern v the wrong output is 
obtained, the internal representation eh 'lI is changed. 

This is done simply by choosing (at random) a hidden unit i, and checking 

the effect of flipping the sign of e?'''' on the total output error, i.e. the number of 
wrong bits. If the output error is not increased, the flip is accepted and the table of 
internal representations is changed accordingly. Otherwise the flip is rejected and 
we try another unit. When we have more than one output unit, it might happen 
that an error in one output unit can not be corrected without introducing an error 
in another unit. Therefore we allow only for a pre-specified number of attempted 
flips, lin, and go on to the next pattern even if the output error was not eliminated 
completely. This procedure ends with a "modified, "improved" table which is our 
next guess of internal representations. Note that this new table does not necessarily 
yield a totally correct output for all the patterns. In such a case, the learning process 
will go on even if this new table is perfectly realized by the next stage - LEARN12. 

4. LEARN12: Present an input pattern; if the output is wrong, apply the PLR 
with the first layer serving as source, treating every hidden layer site separately 
as target. If input v does yield the correct output, we insert the current state 
of the hidden layer as the internal representation associated with pattern v, and 
no learning steps are taken. We sweep in this manner the training set, modifying 
weights Wij, (between input and hidden layer), hidden-layer thresholds Oi, and, as 
explained above, internal representations. If the network has achieved error-free 
performance for the entire training set, learning is completed. Otherwise, after lt2 
training sweeps (or if the current internal representation is perfectly realized), abort 
the PLR stage, keeping the present values of Wij, Oi, and start SETINREP again. 

The idea in trying to learn the current internal representation even if it does not 
yield the perfect output is that it can serve as a better input for the next LEARN23 
stage. That way, in each learning cycle the algorithm tries to improve the overall 
performance of the network. 
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This algorithm can be further generalized for multi-layered feed forward net
works by applying the CHANGE INREP and LEARN12 procedures to each of the 
hidden layers, one by one, from the last to the first hidden layer. 

There are a few details that need to be added. 

a) The "iInpatience" parameters: lt2 and h3, which are rather arbitrary, are 
introduced to guarantee that the PLR stage is aborted if no solution is found, but 
they have to be large enough to allow the PLR to find a solution (if one exists) with 
sufficiently high probability. Similar considerations are valid for the lin parameter, 
the number of flip attempts allowed in the CHANGE INREP procedure. If this 
number is too small, the updated internal representations may not improve. If it is 
too large, the new internal representations might be too different from the previous 
ones, and therefore hard to learn. 

The optimal values depend, in general, on the problem and the network size. 
Our experience indicates, however, that once a "reasonable" range of values is found, 
performance is fairly insensitive to the precise choice. In addition, a simple rule of 
thumb can always be applied: "Whenever learning is getting hard, increase the 
parameters". A detailed study of this issue is reported in [11]. 

b) The Internal representations updating scheme: The CHANGE INREP 
procedure that is presented here (and studied in [11]) is probably the simplest and 
"most primitive" way to update the InRep table. The choice of the hidden units to 
be flipped is completely blind and relies only on the single bit of information about 
the improvement of the total output error. It may even happen that no change in the 
internal representaion is made, although such a change is needed. This procedure 
can certainly be made more efficient, e.g. by probing the fields induced on all the 
hidden units to be flipped and then choosing one (or more) of them by applying a 
"minimal disturbance" principle as in [8]. Nevertheless it was shown [11] that even 
this simple algorithm works quite well. 

c) The weights updating schemes: In our experiments we have used the simple 
PLR with a fixed increment (7] = 1/2, .6.Wij = ±1) for weight learning. It has the 
advantage of allowing the use of discrete (or integer) weights. Nevertheless, it is just 
a component that can be replaced by other, perhaps more sophisticated methods, in 
order to achieve, for example, better stability [12], or to take into account various 
constraints on the weights, e.g. binary weights [13]. In the following section we 
demonstrate how this can be done. 

III. THE CHIR ALGORITHM FOR BINARY WEIGHTS 

In this section we describe how the CHIR algorithm can be used in order to train 
feed forward networks with binary weights. According to this strong constraint, all 
the weights in the system (including the thresholds) can be either +1 or -1. The 
way to do it within the CHIR framework is simple: instead of applying the PLR 
(or any other single layer, real weights algorithm) for the updating of the weights, 








