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Abstract

We provide an abstract characterization of boosting algorithms as
gradient decsent on cost-functionals in an inner-product function
space. We prove convergence of these functional-gradient-descent
algorithms under quite weak conditions. Following previous theo-
retical results bounding the generalization performance of convex
combinations of classifiers in terms of general cost functions of the
margin, we present a new algorithm (DOOM II) for performing a
gradient descent optimization of such cost functions. Experiments
on several data sets from the UC Irvine repository demonstrate
that DOOM II generally outperforms AdaBoost, especially in high
noise situations, and that the overfitting behaviour of AdaBoost is
predicted by our cost functions.

1 Introduction

There has been considerable interest recently in voting methods for pattern classi-
fication, which predict the label of a particular example using a weighted vote over
a set of base classifiers [10, 2, 6, 9, 16, 5, 3, 19, 12, 17, 7, 11, 8]. Recent theoretical
results suggest that the effectiveness of these algorithms is due to their tendency
to produce large margin classifiers [1, 18]. Loosely speaking, if a combination of
classifiers correctly classifies most of the training data with a large margin, then its
error probability is small.

In [14] we gave improved upper bounds on the misclassification probability of a
combined classifier in terms of the average over the training data of a certain cost
function of the margins. That paper also described DOOM, an algorithm for di-
rectly minimizing the margin cost function by adjusting the weights associated with
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each base classifier (the base classifiers are suppiled to DOOM). DOOM exhibits
performance improvements over AdaBoost, even when using the same base hypothe-
ses, which provides additional empirical evidence that these margin cost functions
are appropriate quantities to optimize.

In this paper, we present a general class of algorithms (called AnyBoost) which
are gradient descent algorithms for choosing linear combinations of elements of an
inner product function space so as to minimize some cost functional. The normal
operation of a weak learner is shown to be equivalent to maximizing a certain inner
product. We prove convergence of AnyBoost under weak conditions. In Section 3,
we show that this general class of algorithms includes as special cases nearly all
existing voting methods. In Section 5, we present experimental results for a special
case of AnyBoost that minimizes a theoretically-motivated margin cost functional.
The experiments show that the new algorithm typically outperforms AdaBoost, and
that this is especially true with label noise. In addition, the theoretically-motivated
cost functions provide good estimates of the error of AdaBoost, in the sense that
they can be used to predict its overfitting behaviour.

2 AnyBoost

Let (z,y) denote examples from X x Y, where X is the space of measurements
(typically X C RV) and Y is the space of labels (Y is usually a discrete set or some
subset of R). Let F denote some class of functions (the base hypotheses) mapping
X — Y, and lin (F) denote the set of all linear combinations of functions in F. Let
(,) be an inner product on lin (F), and

C:lin(F)—>R
a cost functional on lin (F).

Our aim is to find a function F € lin (F) minimizing C(F). We will proceed
iteratively via a gradient descent procedure.

Suppose we have some F' € lin (F) and we wish to find a new f € F to add to F
so that the cost C(F + €f) decreases, for some small value of €. Viewed in function
space terms, we are asking for the “direction” f such that C(F + €f) most rapidly
decreases. The desired direction is simply the negative of the functional derivative
of C at F, —VC(F), where:

voF)@E) = 208l (1)

a=0
where 1, is the indicator function of z. Since we are restricted to choosing our new
function f from F, in general it will not be possible to choose f = —VC(F), so
instead we search for an f with greatest inner product with —VC(F). That is, we
should choose f to maximize — (VC(F), f). This can be motivated by observing
that, to first order in €, C(F + €¢f) = C(F) + ¢ (VC(F), f) and hence the greatest
reduction in cost will occur for the f maximizing — (VC(F), f).

For reasons that will become obvious later, an algorithm that chooses f attempting
to maximize — (VC(F), f) will be described as a weak learner.

The preceding discussion motivates Algorithm 1 (AnyBoost), an iterative algorithm
for finding linear combinations F' of base hypotheses in F that minimize the cost
functional C(F'). Note that we have allowed the base hypotheses to take values in
an arbitrary set Y, we have not restricted the form of the cost or the inner product,
and we have not specified what the step-sizes should be. Appropriate choices for
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these things will be made when we apply the algorithm to more concrete situations.
Note also that the algorithm terminates when — (VC(F}), fi4+1) < 0, i.e when the
weak learner £ returns a base hypothesis fi;1 which no longer points in the downhill
direction of the cost function C(F'). Thus, the algorithm terminates when, to first
order, a step in function space in the direction of the base hypothesis returned by
L would increase the cost.

Algorithm 1 : AnyBoost

Require : . . )
e An inner product space (X, (,)) containing functions mapping from X to

some set Y.
e A class of base classifiers F C X.
e A differentiable cost functional C': lin (F) = R.
e A weak learner £(F') that accepts F' € lin (¥) and returns f € F with a
large value of — (VC(F), f).
Let Fy(z) := 0.
for t:=0toT do
Let fiy1 := L(F}).
if —(VC(F), fi+1) <0 then
return F;.
end if
Choose wy ;.
Let Fip1 := Fy + weq fi
end for
return Fry,.

3 A gradient descent view of voting methods

We now restrict our attention to base hypotheses f € F mapping to Y = {£1},
and the inner product

(F,G) = — > F(@:)G(z) @

for all F,G € lin (F), where S = {z1,¥1),---,(Zn,¥Yn)} is a set of training examples
generated according to some unknown distribution D on X x Y. Qur aim now is to
find F' € lin () such that Pr(, ,)~psgn (F(z)) # y is minimal, where sgn (F(z)) =
—1if F(z) < 0 and sgn (F(z)) = 1 otherwise. In other words, sgn F' should minimize
the misclassification probability.

The margin of F: X — R on example (z,y) is defined as yF(z). Consider margin
cost-functionals defined by
1 m
CF) =~ > e(yiF(z:))
i=1
where c: ® — R is any differentiable real-valued function of the margin. With these
definitions, a quick calculation shows:

—(VO(F), f) = = > wi (@) F (@)
i=1

Since positive margins correspond to examples correctly labelled by sgn F' and neg-
ative margins to incorrectly labelled examples, any sensible cost function of the
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Table 1: Existing voting methods viewed as AnyBoost on margin cost functions.

Algorithm Cost function Step size
AdaBoost [9)] e vF(z) Line search
ARC-X4 [2] (1 —yF(z))° 1/t
ConfidenceBoost [19] e~ vF (=) Line search
LogitBoost [12] In(1 + e~¥¥(2)) | Newton-Raphson

margin will be monotonically decreasing. Hence —c'(y; F'(z;)) will always be posi-
tive. Dividing through by — Y7~ | ¢/(y:F'(z;)), we see that finding an f maximizing
— (VC(F), f) is equivalent to finding an f minimizing the weighted error
; ; (yiF (z:)) :
D(i) where D(i)i==s————— fori=1,...,m.
i fg:);éy.- ki A SaRTen)

Many of the most successful voting methods are, for the appropriate choice of margin
cost function ¢ and step-size, specific cases of the AnyBoost algorithm (see Table 3).
A more detailed analysis can be found in the full version of this paper [15].

4 Convergence of AnyBoost

In this section we provide convergence results for the AnyBoost algorithm, under
quite weak conditions on the cost functional C. The prescriptions given for the
step-sizes w; in these results are for convergence guarantees only: in practice they
will almost always be smaller than necessary, hence fixed small steps or some form
of line search should be used.

The following theorem (proof omitted, see [15]) supplies a specific step-size for
AnyBoost and characterizes the limiting behaviour with this step-size.

Theorem 1. Let C: lin(F) — R be any lower bounded, Lipschitz differentiable
cost functional (that is, there exists L > 0 such that || VC(F)—-VC(F')|| < L||F-F')|
for all F,F' € lin(F)). Let Fy,F,... be the sequence of combined hypotheses
generated by the AnyBoost algorithm, using step-sizes

_(VC(R), f1)
L ferl? ®)

Then AnyBoost either halts on round T with — (VC(Fr), fr+1) < 0, or C(F})
converges to some finite value C*, in which case lim;_,o (VC(F}), fi+1) = 0.

Wit =

The next theorem (proof omitted, see [15]) shows that if the weak learner can
always find the best weak hypothesis f; € F on each round of AnyBoost, and if
the cost functional C is convex, then any accumulation point F' of the sequence
(F;) generated by AnyBoost with the step sizes (3) is a global minimum of the
cost. For ease of exposition, we have assumed that rather than terminating when
—(VC(Fr), fr+1) <0, AnyBoost simply continues to return Fr for all subsequent
time steps t.

Theorem 2. Let C: lin(F) — R be a convex cost functional with the properties
in Theorem 1, and let (F;) be the sequence of combined hypotheses generated by
the AnyBoost algorithm with step sizes given by (3). Assume that the weak hypoth-
esis class F is negation closed (f € F = —f € F) and that on each round












