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We present a general framework for discriminative estimation based 
on the maximum entropy principle and its extensions. All calcula­
tions involve distributions over structures and/or parameters rather 
than specific settings and reduce to relative entropy projections. 
This holds even when the data is not separable within the chosen 
parametric class, in the context of anomaly detection rather than 
classification, or when the labels in the training set are uncertain or 
incomplete. Support vector machines are naturally subsumed un­
der this class and we provide several extensions. We are also able 
to estimate exactly and efficiently discriminative distributions over 
tree structures of class-conditional models within this framework. 
Preliminary experimental results are indicative of the potential in 
these techniques. 

1 Introduction 

Effective discrimination is essential in many application areas. Employing gener­
ative probability models such as mixture models in this context is attractive but 
the criterion (e.g., maximum likelihood) used for parameter/structure estimation 
is suboptimal. Support vector machines (SVMs) are, for example, more robust 
techniques as they are specifically designed for discrimination [9]. 

Our approach towards general discriminative training is based on the well known 
maximum entropy principle (e.g., [3]). This enables an appropriate training of both 
ordinary and structural parameters of the model (cf. [5, 7]). The approach is not 
limited to probability models and extends, e.g., SVMs. 

2 Maximum entropy classification 

Consider a two-class classification problem1 where labels y E {-I, I} are assigned 

IThe extension to a multi-class is straightforward[4]. The formulation also admits an 
easy extension to regression problems, analogously to SVMs. 
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to examples X E X. Given two generative probability distributions P(XIOy ) with 
parameters Oy, one for each class, the corresponding decision rule follows the sign 
of the discriminant function: 

P(XIOl) 
C(XI8) = log P(XIO-l) + b (1) 

where 8 = {Ol,O-l,b} and b is a bias term, usually expressed as a log-ratio b = 
log p/(l - p). The class-conditional distributions may come from different families 
of distributions or the parametric discriminant function could be specified directly 
without any reference to models. The parameters Oy may also include the model 
structure (see later sections). 

The parameters 8 = {01, 0-1, b} should be chosen to maximize classification accu­
racy. We consider here the more general problem of finding a distribution P(8) 
over parameters and using a convex combination of discriminant functions, i.e., 
J P(8)C(XI8)d8 in the decision rule. The search for the optimal P(8) can be for­
malized as a maximum entropy (ME) estimation problem. Given a set of training 
examples {Xl, ... , X T} and corresponding labels {Yl, ... ,YT} we find a distribu­
tion P(8) that maximizes the entropy H(P) subject to the classification constraints 
J P(8) [Yt C(Xt I8)] d8 2: , for all t. Here, > 0 specifies a desired classification 
margin. The solution is unique (if it exists) since H(P) is concave and the linear 
constraints specify a convex region. Note that the preference towards high entropy 
distributions (fewer assumptions) applies only within the admissible set of distribu­
tions P'"Y consistent with the constraints. See [2] for related work. 

We will extend this basic idea in a number of ways. The ME formulation assumes, 
for example, that the training examples can be separated with the specified mar­
gin. We may also have a reason to prefer some parameter values over others and 
would therefore like to incorporate a prior distribution Po (8). Other extensions 
and generalizations will be discussed later in the paper. 

A more complete formulation is based on the following minimum relative entropy 
principle: 

Definition 1 Let {Xt, yd be the training examples and labels, C(XI8) a parametric 
discriminant function, and, = [,1, ... "tl a set of margin variables. Assuming a 
prior distribution Po(8,,), we find the discriminative minimum relative entropy 
(MRE) distribution P(8,,) by minimizing D(PIIPo) subject to 

(2) 

for all t. Here fj = sign ( J P(8) C(XI8) d8) specifies the decision rule for any 
new example X. 

The margin constraints and the preference towards large margin solutions are encod­
ed in the prior Po('). Allowing negative margin values with non-zero probabilities 
also guarantees that the admissible set P consisting of distributions P(8,,) con­
sistent with the constraints, is never empty. Even when the examples cannot be 
separated by any discriminant function in the parametric class (e.g., linear), we 
get a valid solution. The miss-classification penalties follow from Pob) as well. 
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Figure 1: a) Minimum relative entropy (MRE) projection from the prior distribution 
to the admissible set. b) The margin prior Po(Tt). c) The potential terms in the 
MRE formulation (solid line) and in SVMs (dashed line). c = 5 in this case. 

Suppose po(e , ,) = po(e)Po(T) and poe,) = Dt Po (Tt) , where 

Po(Tt) = ee-c(I-"Yt) for ,t ~ 1, (3) 

This is shown in Figure lb. The penalty for margins smaller than I-lie (the prior 
mean of,t) is given by the relative entropy distance between P(T) and Po(T). This 
is similar but not identical to the use of slack variables in support vector machines. 
Other choices of the prior are discussed in [4]. 

The MRE solution can be viewed as a relative entropy projection from the prior 
distribution po(e,,) to the admissible set P . Figure la illustrates this view. From 
the point of view of regularization theory, the prior probability Po specifies the 
entropic regularization used in this approach. 

Theorem 1 The solution to the MRE problem has the following general form [1] 

pee,,) = ztA)Po(e,,) el:t At[Yt,C(xtle)-"Y,] (4) 

where Z (A) is the normalization constant (partition function) and A = {AI, ... , AT} 
defines a set of non-negative Lagrange multipliers, one for each classification con­
straint. A are set by finding the unique maximum of the following jointly concave 
objective function: J(A) = -logZ(A) 

The solution is sparse, Le., only a few Lagrange mUltipliers will be non-zero. This 
arises because many of the classification constraints become irrelevant once the 
constraints are enforced for a small subset of examples. Sparsity leads to immediate 
but weak generalization guarantees expressed in terms of the number of non-zero 
Lagrange multipliers [4]. Practicalleave-one-out cross-validation estimates can be 
also derived. 

2.1 Practical realization of the MRE solution 

We now turn to finding the MRE solution. To begin with, we note that any disjoint 
factorization of the prior Po (e, ,), where the corresponding parameters appear in 
distinct additive components in YtC(Xt, e) - ,t , leads to a disjoint factorization of 
the MRE solution pee, ,) . For example, {e \ b, b, ,} provides such a factorization . 
As a result of this factorization, the bias term could be eliminated by imposing 
additional constraints on the Lagrange multipliers [4]. This is analogous to the 
handling of the bias term in support vector machines [9]. 

We consider now a few specific realizations such as support vector machines and a 
class of graphical models. 
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2.1.1 Support vector machines 

It is well known that the log-likelihood ratio of two Gaussian distributions with equal 
covariance matrices yields a linear decision rule. With a few additional assumptions, 
the MRE formulation gives support vector machines: 

Theorem 2 Assuming C(X, e) = OT X - band po(e, ,) = Po(O)Po(b)Po(,) where 
Po (0) is N (0,1), Po (b) approaches a non-informative prior, and Po (J) is given by 
eq. (3) then the Lagrange multipliers A are obtained by maximizing J(A) subject to ° ::; At ::; c and 2:t AtYt = 0, where 

J(A) = :~:) At + log(l - At/C)]- ~ 2:, AtAt'YtydX [ X t,) 
t t,t' 

(5) 

The only difference between our J(A) and the (dual) optimization problem for 
SVMs is the additional potential term log(l - At/C). This highlights the effect 
of the different miss-classification penalties, which in our case come from the MRE 
projection. Figure Ib shows, however, that the additional potential term does not 
always carry a huge effect (for c = 5). Moreover, in the separable case, letting 
c -+ 00, the two methods coincide. The decision rules are formally identical. 

We now consider the case where the discriminant function C(X, e) corresponds to 
the log-likelihood ratio of two Gaussians with different (and adjustable) covariance 
matrices. The parameters e in this case are both the means and the covariances. 
The prior paCe) must be the conjugate Normal-Wishart to obtain closed form 
integrals2 for the partition function, Z. Here, p(e l , e- l ) is P(m1' VdP(m-1, V-d, 
a density over means and covariances. 

The prior distribution has the form po(ed = N(m1; mo, Vdk) IW(V1; kVo, k) with 
parameters (k, mo, Vo) that can be specified manually or one may let k -+ 0 to get 
a non-informative prior. Integrating over the parameters and the margin, we get 
Z = Z"( X Zl X Z-l, where 

(6) 

.:l -.:l w 6 T - -T . 
N1 = 2:t Wt, Xl = 2:t ~Xt, 3 1 = 2:t WtXtXt - N 1X I X 1 . Here, Wt IS a scalar 
weight given by Wt = u(Yt)+YtAt. For Z-l, the weights are set to Wt = u( -Yt)-YtAt; 
u(·) is the step function. Given Z, updating A is done by maximizing J(A). The 
resulting marginal MRE distribution over the parameters (normalized by Zl x Z-d 
is a Normal-Wishart distribution itself, p(e1) = N(m1; Xl, VdNd IW(V1; 3 1 , N 1) 
with the final A values. Predicting the label for a new example X involves taking 
expectations of the discriminant function under a Normal-Wishart. This is 

We thus obtain discriminative quadratic decision boundaries. These extend the 
linear boundaries without (explicitly) resorting to kernels. More generally, the 
covariance estimation in this framework adaptively modifies the kernel. 

2This can be done more generally for conjugate priors in the exponential family. 
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2.1.2 Graphical models 

We consider here graphical models with no hidden variables. The ME (or MRE) 
distribut ion is in this case a distribution over both structures and parameters. Find­
ing the distribution over parameters can be done in closed form for conjugate priors 
when the observations are complete. The distribution over structures is, in general, 
intractable. A notable exception is a tree model that we discuss in the forthcoming. 

A tree graphical model is a graphical model for which the structure is a tree. This 
model has the property that its log-likelihood can be expressed as a sum of local 
terms [8] 

logP(X,EIO) = 2: hu(X, 0) + 2: wuv(X,O) (8) 
u uvEE 

The discriminant function consisting of the log-likelihood ratio of a pair of tree 
models (depending on the edge sets E1, E_l, and parameters 01, 0_ 1) can be also 
expressed in this form. 

We consider here the ME distribution over tree structures for fixed parameters3. 

The treatment of the general case (i.e. including the parameters) is a direct exten­
sion of this result. The ME distribution over the edge sets E1 and E-1 factorizes 
with components 

P(E±l) = _1_e±2:,)."Yt[2:uvEE±1 w;!'v1(X"O±I)+2: uhU(X"O±I») = h±1 IT �W�~�1� (9) 
Z±1 Z±1 EE uv ±1 

where Z±1, h±l, W±1 are functions of the same Lagrange multipliers..\. To com­
pletely define the distribution we need to find ..\ that optimize J(..\) in Theorem 1; 
for classification we also need to compute averages with respect to P(E±d. For 
these, it suffices to obtain an expression of the partition function( s) Z±1. 

P is a discrete distribution over all possible tree structures for n variables (there 
are nn-2 trees). However, a remarkable graph theory result, called the Matrix Tree 
Theorem [10], enables us to perform all necessary summations in closed form in 
polynomial time. On the basis of this result, we find 

Theorem 3 The normalization constant Z of a distribution of the form (9) is 

Z h.2: IT Wuv = h 'IQ(W)I, where (10) 
E uvEE 

{ -Wuv 
�2�:�~�'�=�l� WV'v 

Quv(W) u=f:.v 
u=v 

(11) 

This shows that summing over the distribution of all trees, when this distribution 
factors according to the trees' edges, can be done in closed form by computing the 
value of a determinant in time O(n3 ). Since we obtain a closed form expression, 
optimization of the Lagrange multipliers and evaluating the resulting classification 
rule are also tractable. 

Figure 2a provides a comparison of the discriminative tree approach and a maximum 
likelihood tree estimation method on a DNA splice junction problem. 

3Each tree relies on a different set of n -1 pairwise node marginals. In our experiments 
the class-conditional pairwise marginals were obtained directly from data. 






