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The curse of dimensionality is severe when modeling high-dimensional 
discrete data: the number of possible combinations of the variables ex
plodes exponentially. In this paper we propose a new architecture for 
modeling high-dimensional data that requires resources (parameters and 
computations) that grow only at most as the square of the number of vari
ables, using a multi-layer neural network to represent the joint distribu
tion of the variables as the product of conditional distributions. The neu
ral network can be interpreted as a graphical model without hidden ran
dom variables, but in which the conditional distributions are tied through 
the hidden units. The connectivity of the neural network can be pruned by 
using dependency tests between the variables. Experiments on modeling 
the distribution of several discrete data sets show statistically significant 
improvements over other methods such as naive Bayes and comparable 
Bayesian networks, and show that significant improvements can be ob
tained by pruning the network. 

1 Introduction 
The curse of dimensionality hits particularly hard on models of high-dimensional discrete 
data because there are many more possible combinations of the values of the variables than 
can possibly be observed in any data set, even the large data sets now common in data
mining applications. In this paper we are dealing in particular with multivariate discrete 
data, where one tries to build a model of the distribution of the data. This can be used for 
example to detect anomalous cases in data-mining applications, or it can be used to model 
the class-conditional distribution of some observed variables in order to build a classifier. 
A simple multinomial maximum likelihood model would give zero probability to all of 
the combinations not encountered in the training set, i.e., it would most likely give zero 
probability to most out-of-sample test cases. Smoothing the model by assigning the same 
non-zero probability for all the unobserved cases would not be satisfactory either because 
it would not provide much generalization from the training set. This could be obtained by 
using a multivariate multinomial model whose parameters B are estimated by the maximum 
a-posteriori (MAP) principle, i.e., those that have the greatest probability, given the training 
data D, and using a diffuse prior PCB) (e.g. Dirichlet) on the parameters. 

A graphical model or Bayesian network [6, 5) represents the joint distribution of random 
variables Zl ... Zn with 

n 

P(ZI ... Zn) = II P(ZiIParentsi) 
i=l 

°Part of this work was done while S.B. was at CIRANO, Montreal, Qc. Canada. 
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where Parentsi is the set of random variables which are called the parents of variable i 
in the graphical model because they directly condition Zi, and an arrow is drawn, in the 
graphical model, to Zi, from each of its parents. A fully connected "left-to-right" graphical 
model is illustrated in Figure 1 (left), which corresponds to the model 

n 

P(ZI . .. Zn) = II P(ZiIZl ... Zi-r) . (1) 
i= l 

Figure 1: Left: a fully connected "left-to-right" graphical model. 
Right: the architecture of a neural network that simulates a ful1y connected "left-to-right" 
graphical model. The observed values Zi = Zi are encoded in the corresponding input 
unit group. hi is a group of hidden units. gi is a group of output units, which depend 
on Zl ... Zi -l , representing the parameters of a distribution over Zi. These conditional 
probabilities P(ZiIZl . . . Zi-r) are multiplied to obtain the joint distribution. 

Note that this representation depends on the ordering of the variables (in that all previous 
variables in this order are taken as parents). We call each combination of the values of 
Parentsi a context. In the "exact" model (with the full table of all possible contexts) all the 
orders are equivalent, but if approximations are used, different predictions could be made 
by different models assuming different orders. 

In graphical models, the curse of dimensionality shows up in the representation of condi
tional distributions P(Zi IParentsi) where Zi has many parents. If Zj E Parentsi can take 
nj values, there are TI j nj different contexts which can occur in which one would like to 
estimate the distribution of Zi. This serious problem has been addressed in the past by two 
types of approaches, which are sometimes combined: 

1. Not modeling all the dependencies between all the variables: this is the approach mainly 
taken with most graphical models or Bayes networks [6, 5] . The set of independencies 
can be assumed using a-priori or human expert knowledge or can be learned from data. 
See also [2] in which the set Parentsi is restricted to at most one element, which is 
chosen to maximize the correlation with Zi. 

2 . Approximating the mathematicalform of the joint distribution with a form that takes only 
into account dependencies of lower order, or only takes into account some of the possi
ble dependencies, e.g., with the Rademacher-Walsh expansion or multi-binomial [1,3], 
which is a low-order polynomial approximation of a full joint binomial distribution (and 
is used in the experiments reported in this paper). 

The approach we are putting forward in this paper is mostly of the second category, al
though we are using simple non-parametric statistics of the dependency between pairs of 
variables to further reduce the number of required parameters. 

In the multi-binomial model [3], the joint distribution of a set of binary variables is approx
imated by a polynomial. Whereas the "exact" representation of P( Zl = Z l , ... Zn = zn) 
as a function of Z l . . . Zn is a polynomial of degree n, it can be approximated with a lower 
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degree polynomial, and this approximation can be easily computed using the Rademacher
Walsh expansion [1] (or other similar expansions, such as the Bahadur-Lazarsfeld ex
pansion [1]) . Therefore, instead of having 2n parameters, the approximated model for 
P(Zl , . . . Zn) only requires O(nk) parameters. Typically, order k = 2 is used. The model 
proposed here also requires O(n2 ) parameters, but it allows to model dependencies be
tween tuples of variables, with more than 2 variables at a time. 

In previous related work by Frey [4], a fully-connected graphical model is used (see Fig
ure 1, left) but each of the conditional distributions is represented by a logistic, which take 
into account only first-order dependency between the variables: 

1 
P(Zi = llZl ... Zi-d = ( L Z )' 

1 + exp -Wo - j<i Wj j 

In this paper, we basically extend Frey's idea to using a neural network with a hidden 
layer, with a particular architecture, allowing multinomial or continuous variables, and we 
propose to prune down the network weights . Frey has named his model a Logistic Au
toregressive Bayesian Network or LARC. He argues that the prior variances on the logistic 
weights (which correspond to inverse weight decays) should be chosen inversely propor
tional to the number of conditioning variables (i.e. the number of inputs to the particular 
output neuron). The model was tested on a task of learning to classify digits from 8x8 bi
nary pixel images. Models with different orderings of the variables were compared and did 
not yield significant differences in performance. When averaging the predictive probabili
ties from 10 different models obtained by considering 10 different random orderings, Frey 
obtained small improvements in likelihood but not in classification. The model performed 
better or equivalently to other models tested: CART, naive Bayes, K-nearest neighbors, and 
various Bayesian models with hidden variables (Helmholtz machines). These results are 
impressive, taking into account the simplicity of the LARC model. 

2 Proposed Architecture 

The proposed architecture is a "neural network" implementation of a graphical model 
where all the variables are observed in the training set, with the hidden units playing a sig
nificant role to share parameters across different conditional distributions. Figure 1 (right) 
illustrates the model in the simpler case of a fully connected (Ieft-to-right) graphical model 
(Figure 1, left) . The neural network represents the parametrized function 

jo(zt, . .. , zn) = log(?O(Zl = Zl,· · ., Zn = zn)) (2) 

approximating the joint distribution of the variables, with parameters 0 being the weights of 
the neural network. The architecture has three layers, with each layer organized in groups 
associated to each of the variables. The above log-probability is computed as the sum of 
conditional log-probabilities 

n 

jO(Zl , . .. , zn) = L 109(P(Zi = zilgi(zl, .. . , Zi-l))) 

i=l 

where gi(Zt, . .. , zi-d is the vector-valued output of the i-th group of output units, and 
it gives the value of the parameters of the distribution of Zi when Zl = Zl , Z2 = 
Z2, .. . , Zi-l = Zi-l' For example, in the ordinary discrete case, gi may be the vector 
of probabilities associated with each of the possible values of the multinomial random 
variable Zi . In this case, we have 

P(Zi = i'lgi) = gi ,i' 
In this example, a softmax output for the i-th group may be used to force these parameters 
to be positive and sum to 1, i.e., 

gi ,i' = g' Lil e i ,i' 
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where g~ i' are linear combinations of the hidden units outputs, with i' ranging over the 
number of elements of the parameter vector associated with the distribution of Zi (for a 
fixed value of Zl ... Zi-l). To guarantee that the functions gi(Zl, ... , Zi-l) only depend 
on Zl ... Zi-l and not on any of Zi ... Zn, the connectivity struture of the hidden units must 
be constrained as follows: 

mj 

g~,i' = bi,i' + 2: 2: Wi,i' ,j,j' hj,j' 

j~i j'=1 

where the b's are biases and the w's are weights of the output layer, and the hj,j' is the 
output of the j'-th unit (out of mj such units) in the j-th group of hidden layer nodes. It 
may be computed as follows: 

nk 

hj ,j' = tanh(cj,j' + 2: 2: Vj ,j' ,k ,k' Zk ,k') 

k<j k'=l 

where the c's are biases and the v's are the weights of the hidden layer, and Zk,k' is k'-th 
element of the vectorial input representation of the value Zk = Zk. For example, in the 
binary case (Zi = 0 or 1) we have used only one input node, i.e., 

Zi binomial -t Zi,O = Zi 

and in the multinomial case we use the one-hot encoding, 

Zi E {O, 1, ... ni - I} -t Zi ,i' = 8Zi ,i' 

where 8i ,i' = 1 if i = i' and 0 otherwise. The input layer has n - 1 groups because 
the value Zn = Zn is not used as an input. The hidden layer also has n - 1 groups 
corresponding to the variables j = 2 to n (since P(Z.) is represented unconditionally in 
the first output group, its corresponding group does not need any hidden units or inputs, but 
just has biases). 

2.1 Discussion 

The number of free parameters of the model is O(n2 H) where H = maXi mj is the maxi
mum number of hidden units per hidden group (i.e., associated with one of the variables). 
This is basically quadratic in the number of variables, like the multi-binomial approxima
tion that uses a polynomial expansion of the joint distribution. However, as H is increased, 
representation theorems for neural networks suggest that we should be able to approximate 
with arbitrary precision the true joint distribution. Of course the true limiting factor is the 
amount of data, and H should be tuned according to the amount of data. In our experiments 
we have used cross-validation to choose a value of mj = H for all the hidden groups. In 
this sense, this neural network representation of P(ZI ... Zn) is to the polynomial expan
sions (such as the multi-binomial) what ordinary multilayer neural networks for function 
approximation are to polynomial function approximators. It allows to capture high-order 
dependencies, but not all of them. It is the number of hidden units that controls "how 
many" such dependencies will be captured, and it is the data that "chooses" which of the 
actual dependencies are most useful in maximizing the likelihood. 

Unlike Bayesian networks with hidden random variables, learning with the proposed archi
tecture is very simple, even when there are no conditional independencies. To optimize the 
parameters we have simply used gradient-based optimization methods, either using con
jugate or stochastic (on-line) gradient, to maximize the total log-likelihood which is the 
sum of values of f (eq. 2) for the training examples. A prior on the parameters can be 
incorporated in the cost function and the MAP estimator can be obtained as easily, by max
imizing the total log-likelihood plus the log-prior on the parameters. In our experiments 
we have used a "weight decay" penalty inspired by the analysis of Frey [4], with a penalty 
proportional to the number of weights incoming into a neuron. 
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However, it is not so clear how the distribution could be generally marginalized, except 
by summing over possibly many combinations of the values of variables to be integrated. 
Another related question is whether one could deal with missing values: if the total number 
of values that the missing variables can take is reasonably small, then one can sum over 
these values in order to obtain a marginal probability and maximize this probability. If 
some variables have more systematically missing values, they can be put at the end of the 
variable ordering, and in this case it is very easy to compute the marginal distribution (by 
taking only the product of the output probabilities up to the missing variables). Similarly, 
one can easily compute the predictive distribution of the last variable given the first n - 1 
variables. 

The framework can be easily extended to hybrid models involving both continuous and 
discrete variables. In the case of continuous variables, one has to choose a parametric form 
for the distribution of the continuous variable when all its parents (i.e., the conditioning 
context) are fixed. For example one could use a normal, log-normal, or mixture of normals. 
Instead of having softmax outputs, the i-th output group would compute the parameters 
of this continuous distribution (e.g., mean and log-variance). Another type of extension 
allows to build a conditional distribution, e.g., to model P(ZI ... ZnlXl ... Xm). One 
just adds extra input units to represent the values of the conditioning variables Xl ... X m . 

Finally, an architectural extension that we have implemented is to allow direct input-to
output connections (still following the rules of ordering which allow gi to depend only on 
Zl ... Zi-l). Therefore in the case where the number of hidden units is 0 (H = 0) we obtain 
the LARC model proposed by Frey [4]. 

2.2 Choice of topology 
Another type of extension of this model which we have found very useful in our experi
ments is to allow the user to choose a topology that is not fully connected (Ieft-to-right). In 
our experiments we have used non-parametric tests to heuristically eliminate some of the 
connections in the network, but one could also use expert or prior knowledge, just as with 
regular graphical models, in order to cut down on the number of free parameters. 

In our experiments we have used for a pairwise test of statistical dependency the 
Kolmogorov-Smirnov statistic (which works both for continuous and discrete variables). 
The statistic for variables X and Y is 

s = Jl sup IP(X :::; Xi, Y :::; Yi) - P(X :::; Xi)P(Y :::; Yi) I 
i 

where l is the number of examples and P is the empirical distribution (obtained by counting 
over the training data). We have ranked the pairs according to their value of the statistic s, 
and we have chosen those pairs for which the value of statistic is above a threshold value 
s*, which was chosen by cross-validation. When the pairs {(Zi' Zj)} are chosen to be part 
of the model, and assuming without loss of generality that i < j for those pairs, then the 
only connections that are kept in the network (in addition to those from the k-th hidden 
group to the k-th output group) are those from hidden group i to output group j, and from 
input group i to hidden group j, for every such (Zi' Zj) pair. 

3 Experiments 

In the experiments we have compared the following models: 

• Naive Bayes: the likelihood is obtained as a product of multinomials (one per variable). 
Each multinomial is smoothed with a Dirichlet prior. 

• Multi-Binomial (using Rademacher-Walsh expansion of order 2) [3]. Since this only 
handles the case of binary data, it was only applied to the DNA data set. 

• A simple graphical model with the same pairs of variables and variable ordering as se
lected for the neural network, but in which each of the conditional distribution is modeled 






