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Abstract 

We present a probabilistic latent-variable framework for data visu­
alisation, a key feature of which is its applicability to binary and 
categorical data types for which few established methods exist. A 
variational approximation to the likelihood is exploited to derive a 
fast algorithm for determining the model parameters. Illustrations 
of application to real and synthetic binary data sets are given. 

1 Introduction 

Visualisation is a powerful tool in the exploratory analysis of multivariate data. The 
rendering of high-dimensional data in two dimensions, while generally implying loss 
of information, often reveals interesting structure to the human eye. Standard 
dimensionality-reduction methods from multivariate analysis, notably the principal 
component projection, are often utilised for this purpose, while techniques such 
as 'projection pursuit ' have been tailored specifically to this end. With the cur­
rent trend for larger databases and the need for effective 'data mining' methods, 
visualisation is becoming increasingly topical, and recent novel developments in­
clude nonlinear topographic methods (Lowe and Tipping 1997; Bishop, Svensen, 
and Williams 1998) and hierarchical combinations of linear models (Bishop and 
Tipping 1998). However, a disadvantageous aspect of many proposed techniques 
is their applicability only to continuous variables; there are very few such methods 
proposed specifically for the visualisation of discrete binary data types, which are 
commonplace in real-world datasets. 

We approach this difficulty by proposing a probabilistic framework for the visualisa­
tion of arbitrary data types, based on an underlying latent variable density model. 
This leads to an algorithm which permits the visualisation of structure within data, 
while also defining a generative observation probability model. A further, and 
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intuitively pleasing, result is that the specialisation of the model to continuous vari­
ables recovers principal component analysis. Continuous, binary and categorical 
data types may thus be combined and visualised together within this framework, 
but for reasons of space, we concentrate on binary types alone in this paper. 

In the next section we outline the proposed latent variable approach, and in Section 
3 consider the difficulties involved in estimating the parameters in this model, giving 
an efficient variational scheme to this end in Section 4. In Section 5 we illustrate the 
application of the model and consider the accuracy of the variational approximation. 

2 Latent Variable Models for Visualisation 

In an ideal visualisation model, we would wish all of the dependencies between 
variables to be evident in the visualisation space, while the information that we lose 
in the dimensionality-reduction process should represent "noise", independent to 
each variable. This principle is captured by the following probability density model 
for a dataset comprising d-dimensional observation vectors t = (t1' t2, ... , td): 

p(t) = J {gP(!i!X,IJ)} p(x)dx, (1) 

where x is a two-dimensional latent variable vector, the distribution of which must 
be a priori specified, and 0 are the model parameters. Now, for a given value of x 
(or location in the visualisation space), the observations are independent under the 
model. (In general, of course, the model and conditional independence assumption 
will only hold approximately.) However, the unconditional observation model p(t) 
does not, in general, factorise and so can still capture dependencies between the 
d variables, given the constraint implied by the use of just two underlying latent 
variables. So, having estimated the parameters 0, data could be visualised by 
'inverting' the generative model using Bayes' rule: p(xlt) = p(tlx)p(x)/p(t). Each 
data point then induces a distribution in the latent space, which for the purposes 
of visualisation, we might summarise with the conditional mean value (x lt). 

That this form of model can be appropriate for visualisation was demonstrated by 
Bishop and Tipping (1998), who showed that if the latent variables are defined to 
be independent and Gaussian, x "'" N(O, I), and the conditional observation model 
is also Gaussian, tilx "'" N(wJx + J.l.i' a}I), then maximum-likelihood estimation of 
the model parameters {Wi, J.l.i, a}} leads to a model where the the posterior mean 
(xlt) is equivalent to a probabilistic principal component projection. 

A visualisation method for binary variables now follows naturally. Retaining the 
Gaussian latent distribution x "'" N(O , I), we specify an appropriate conditional 
distribution for P( ti Ix, 0). Given that principal components corresponds to a linear 
model for continuous data types, we adopt the appropriate generalised linear model 
in the binary case: 

(2) 

where O'(A) = {I + exp( -An -1 and Ai = wJx + bi with parameters Wi and k 

3 Maximum-likelihood Parameter Estimation 

The proposed model for binary data already exists in the literature under various 
guises , most historically as a latent trait model (Bartholomew 1987), although it 
is not utilised for data visualisation. While in the case of probabilistic principal 
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component analysis, ML parameter estimates can be obtained in closed-form, a dis­
advantageous feature of the binary model is that, with P(tilx) defined by (2), the 
integral of (1) is analytically intractable and P(t) cannot be computed directly. Fit­
ting a latent trait model thus necessitates a numerical integration, and recent papers 
have considered both Gauss-Hermite (Moustaki 1996) and Monte-Carlo sampling 
approximations (Mackay 1995; Sammel, Ryan, and Legler 1997). 

In this latter case, the log-likelihood for a dataset of N observation vectors 
{tl, ... , tN} would be approximated by 

N {I L d } 
;: ~ ~ In L ~ g P(tinIXI, Wi, bi) (3) 

where Xl , l = 1 ... L, are samples from the two-dimensional latent distribution. 

To obtain parameter estimates we may utilise an expectation-maximisation (EM) 
approach by noting that (3) is equivalent in form to an L-component latent class 
model (Bartholomew 1987) where the component probabilities are mutually con­
strained from (2). Applying standard methodology leads to an E-step which re­
quires computation of N x L posterior 'responsibilities' P(xlltn), and a logistic 
regression M-step which is unfortunately iterative , although it can be performed 
relatively efficiently by an iteratively re-weighted least-squares algorithm. Because 
of these difficulties in implementation, in the next section we describe a variational 
approximation to the likelihood which can be maximised more efficiently. 

4 A Variational Approximation to the Likelihood 

Jaakkola and Jordan (1997) introduced a variational approximation for the predic­
tive likelihood in a Bayesian logistic regression model and also briefly considered 
the "dual" problem, which is closely related to the proposed visualisation model. 
In this approach, the integral in (1) is approximated by: 

(4) 

where 

(5) 

with Ai = (2ti - l)(wTx + bi ) and A(~i) = {O.5 - (J(~i)}/2~i. The parameters 
~i are the 'variational' parameters, and this approximation has the property that 
P(tilx, ~i) ::; P(tilx), with equality at ~i = Ai, and thus it follows that P(t) ::; P(t). 

Now because the exponential in (5) is quadratic in X , then the integral in (4), and 
also the likelihood, can be computed in closed form. This suggests an alterna­
tive algorithm for finding parameter estimates where we iteratively maximise the 
variational approximation to the likelihood. Each iteration of this algorithm is guar­
anteed to increase a lower bound on, but will not necessarily maximise, the true 
likelihood. Nevertheless , we would hope that it will be a close approximation, the 
accuracy of which is investigated later. At each step in the algorithm, then, we: 

1. Obtain the sufficient statistics for the approximated posterior distribution 
of latent variables given each observation, p(xnltn, ~n). 

2. Qptimise the variational parameters ~in in order to make the approximation 
P(tn) as close as possible to P(tn) for all tn. 

3. Update the model parameters Wi and bi to increase P(t). 
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Jaakkola and Jordan (1997) give formulae for the above computations, but these 
do not include provision for the 'biases' bi, and so the necessary expressions are 
re-derived below. Note that although we have introduced N x d additional vari­
ational parameters, it is no longer necessary to sample from p(x) and compute 
responsibilities, and no iterative logistic regression step is needed. 

Computing the Latent Posterior Statistics. From Bayes' rule, the posterior 
approximation p(xnltn'~n) is Gaussian with covariance and mean given by 

-1 

en = [1 -2 t '\((in)WiW[ 1 ' (6) 

(7) 

Optimising the Variational Parameters. B~ause P(t) ~ P(t), the variational 
approximation can be optimised by maximising P(tn ) with respect to each (,in. We 
use the EM methodology to obtain updates 

(8) 

where the angle brackets (.) denote expectations with respect to p(xnltn,~~ld) and 
where, from (6) and (7) earlier, the necessary posterior statistics are given by: 

(xn) = I-Ln, (9) 

(xnx~) = C n + I-Lnl-L~. (10) 

Since (6) and (7) depend on the variational parameters, Cn and I-Ln are computed 
followed by the update for each (,in from (8). Iteration of this two-stage process 
is guaranteed to improve monotonically the approximation of P(tn ) and typically 
only two iterations are necessary for convergence. 

Optimising the Model Parameters. We again use EM to increase the varia­
tionallikelihood approximation with respect to Wi and bi. Defining 

Wi = (wi, bi)T, 

x=(xT,1r, 

leads to updates for both Wi and bi given by: 

where 

5 Visualisation 

(11) 

I-Ln) 1 . (12) 

Synthetic clustered data. We firstly give an example of visualisation of 
artificially-generated data to illustrate the operation and features of the method. 
Binary data was synthesised by first generating three random 16-bit prototype vec­
tors, where each bit was set with probability 0.5. Next a 600-point dataset was 
generated by taking 200 examples of each prototype and inverting each bit with 
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probability 0.05. We generated a second dataset in the same manner, but where 
the probability of bit inversion was 0.15, simulating more "noise" about each pro­
totype. The final values of ILn from (7) for each data point are plotted in Figure 
1. In the left plot for the low-noise dataset, the three clusters are clear, as are the 
prototype vectors. On the right, the bit-noise is sufficiently high such that clus­
ters now overlap to a degree and the prototypes are no longer evident. However, 
we can elucidate further information from the model by drawing lines representing 
P(tilx) = 0.5, or wTx+bi = 0, which may be considered to be 'decision boundaries' 
for each bit. These offer more convincing evidence of the presence of three clusters. 
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Figure 1: Visualisation of two synthetic clustered datasets. The three clusters have been 
denoted by separate glyphs, the size of which reflects the number of examples whose 
posterior means are located at that point in the latent space. In the right plot, lines 
corresponding to P(tdx) = 0.5 have been drawn. 

Handwritten digit data. On the left of Figure 2, a visualisation is given of 1000 
examples derived from 16 x 16 images of handwritten digit '2's. There is visual 
evidence of the natural variability of writing styles in the plot as the posterior latent 
means in Figure 2 describe an approximate 'horseshoe' structure. On the right of 
the figure we examine the nature of this by plotting gray-scale images of the vectors 
P(tlxj), where Xj are four numbered samples in the visualisation space. These 
images illustrate the expected value of each bit given the latent-space location and 
demonstrate that the location is indeed indicative of the style of the digit, notably 
the presence of a loop. 

Accuracy of the variational approximation. To investigate the accuracy of the 
approximation, the sampling algorithm of Section 3 for likelihood maximisation was 
implemented and applied to the above two datasets. The evolution of error (negative 
log-likelihood per data-point) was plotted against time for both algorithms, using 
identical initialisations. The 'true' error for the variational approach was estimated 
using the same 500-point Monte-Carlo sample. Typical results are shown in Figure 
3, and the final running time and error (using a sensible stopping criterion) are 
given for both datasets in Table 1. 

For these two example datasets, the variational algorithm converges considerably 
more quickly than in the sampling case, and the difference in final error is relatively 
small, particularly so for the larger-dimensionality dataset. The approximation of 
the posterior distributions p(xnltn) is the key factor in the accuracy of the algo­
rithm. In Figure 4, contours of the posterior distribution in the latent space induced 






