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Abstract
We propose to train trading systems by optimizing financial objec-
tive functions via reinforcement learning. The performance func-
tions that we consider are profit or wealth, the Sharpe ratio and
our recently proposed differential Sharpe ratio for online learn-
ing. In Moody & Wu (1997), we presented empirical results that
demonstrate the advantages of reinforcement learning relative to
supervised learning. Here we extend our previous work to com-
pare Q-Learning to our Recurrent Reinforcement Learning (RRL)
algorithm. We provide new simulation results that demonstrate
the presence of predictability in the monthly S&P 500 Stock Index
for the 25 year period 1970 through 1994, as well as a sensitivity
analysis that provides economic insight into the trader’s structure.

1 Introduction: Reinforcement Learning for Trading

The investor’s or trader’s ultimate goal is to optimize some relevant measure of
trading system performance, such as profit, economic utility or risk-adjusted re-
turn. In this paper, we propose to use recurrent reinforcement learning to directly
optimize such trading system performance functions, and we compare two differ-
ent reinforcement learning methods. The first, Recurrent Reinforcement Learning,
uses immediate rewards to train the trading systems, while the second (Q-Learning
(Watkins 1989)) approximates discounted future rewards. These methodologies can
be applied to optimizing systems designed to trade a single security or to trade port-
folios. In addition, we propose a novel value function for risk-adjusted return that
enables learning to be done online: the differential Sharpe ratio.

Trading system profits depend upon sequences of interdependent decisions, and are
thus path-dependent. Optimal trading decisions when the effects of transactions
costs, market impact and taxes are included require knowledge of the current system
state. In Moody, Wu, Liao & Saffell (1998), we demonstrate that reinforcement
learning provides a more elegant and effective means for training trading systems
when transaction costs are included, than do more standard supervised approaches.

* The authors are also with Nonlinear Prediction Systems.
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Though much theoretical progress has been made in recent years in the area of rein-
forcement learning, there have been relatively few successful, practical applications
of the techniques. Notable examples include Neuro-gammon (Tesauro 1989), the
asset trader of Neuneier (1996), an elevator scheduler (Crites & Barto 1996) and a
space-shuttle payload scheduler (Zhang & Dietterich 1996).

In this paper we present results for reinforcement learning trading systems that
outperform the S&P 500 Stock Index over a 25-year test period, thus demonstrating
the presence of predictable structure in US stock prices. The reinforcement learning
algorithms compared here include our new recurrent reinforcement learning (RRL)
method (Moody & Wu 1997, Moody et al. 1998) and Q-Learning (Watkins 1989).

2 Trading Systems and Financial Performance Functions
2.1 Structure, Profit and Wealth for Trading Systems

We consider performance functions for systems that trade a single ! security with
price series z;. The trader is assumed to take only long, neutral or short positions
F; € {-1,0,1} of constant magnitude. The constant magnitude assumption can
be easily relaxed to enable better risk control. The position F; is established or
maintained at the end of each time interval ¢, and is re-assessed at the end of
period ¢t + 1. A trade is thus possible at the end of each time period, although
nonzero trading costs will discourage excessive trading. A trading system return
R; is realized at the end of the time interval (t — 1,¢] and includes the profit or loss
resulting from the position F;_; held during that interval and any transaction cost
incurred at time ¢ due to a difference in the positions F;_; and F,.

In order to properly incorporate the effects of transactions costs, market impact and
taxes in a trader’s decision making, the trader must have internal state information
and must therefore be recurrent. An example of a single asset trading system
that takes into account transactions costs and market impact has following decision
function: F; = F(0;; Fo—1,I;) with I; = {z¢,z,—1, 2¢—2, .. .} Yt, Y¢—1, Yt—2, . . .} Where
0, denotes the (learned) system parameters at time ¢ and I; denotes the information
set at time ¢, which includes present and past values of the price series z; and an
arbitrary number of other external variables denoted ;.

Trading systems can be optimized by maximizing performance functions U() such
as profit, wealth, utility functions of wealth or performance ratios like the Sharpe
ratio. The simplest and most natural performance function for a risk-insensitive
trader i1s profit. The transactions cost rate is denoted §.

Additive profits are appropriate to consider if each trade is for a fixed number
of shares or contracts of security z;. This is often the case, for example, when
trading small futures accounts or when trading standard US$ FX contracts in dollar-
denominated foreign currencies. With the definitions r, = 2z, — z,_; and r{ =
z] — 2], for the price returns of a risky (traded) asset and a risk-free asset (like T-
Bills) respectively, the additive profit accumulated over T' time periods with trading
position size u > 0 is then defined as:

T T
Pr=3 Re=pd {rl + Fics(re = r{) = 6|F - Fooul} (1)
t=1 t=1

'See Moody et al. (1998) for a detailed discussion of multiple asset portfolios.
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with Py = 0 and typically Fr = Fy = 0. Equation (1) holds for continuous quanti-
ties also. The wealth is defined as Wy = Wy + Pr.

Multiplicative profits are appropriate when a fixed fraction of accumulated
wealth » > 0 is invested in each long or short trade. Here, ry = (2 /2,1 — 1)
and #/ = (2] /z]_, = 1). If no short sales are allowed and the leverage factor is set
fixed at ¥ = 1, the wealth at time T is:

T T
Wr = Wo [ {1+ Re} = Wo [T {14 (1= Foi)r] + Foare {1 = 81Fe = i} (2)
t=1

t=1

2.2 The Differential Sharpe Ratio for On-line Learning

Rather than maximizing profits, most modern fund managers attempt to maximize
risk-adjusted return as advocated by Modern Portfolio Theory. The Sharpe ratio is
the most widely-used measure of risk-adjusted return (Sharpe 1966). Denoting as
before the trading system returns for period ¢ (including transactions costs) as R;,
the Sharpe ratio is defined to be

S = Average(R:) 3)
T = Standard Deviation(R;)
where the average and standard deviation are estimated for periods ¢t = {1,...,T}.

Proper on-line learning requires that we compute the influence on the Sharpe ratio
of the return at time t. To accomplish this, we have derived a new objective func-
tion called the differential Sharpe ratio for on-line optimization of trading system
performance (Moody et al. 1998). It is obtained by considering exponential moving
averages of the returns and standard deviation of returns in (3), and expanding to
first order in the decay rate n: S; &~ S;—; + 7}%"',‘3:0 +0(n?) . Noting that only the
first order term in this expansion depends upon the return R; at time ¢, we define
the differential Sharpe ratio as:

dS, Bi_1AA, — 1A,_1AB,

b= = B — A

(4)

where the quantities A; and B, are exponential moving estimates of the first and
second moments of R;:

Ay = A1 +nAA = Aimy +0(Re — Aea)
Bi = Bi_1+nABy =B;_1+n(R; — Bi—1) . (5)

Treating A,_; and B;_; as numerical constants, note that 7 in the update equations
controls the magnitude of the influence of the return R, on the Sharpe ratio S;.
Hence, the differential Sharpe ratio represents the influence of the trading return
R; realized at time ¢ on S;.

3 Reinforcement Learning for Trading Systems

The goal in using reinforcement learning to adjust the parameters of a system is
to maximize the expected payoff or reward that is generated due to the actions
of the system. This is accomplished through trial and error exploration of the
environment. The system receives a reinforcement signal from its environment (a
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reward) that provides information on whether its actions are good or bad. The
performance function at time T can be expressed as a function of the sequence of
trading returns Ur = U(Ry, Ra, ..., Rr).

Given a trading system model F;(6), the goal is to adjust the parameters 6 in
order to maximize Ur. This maximization for a complete sequence of T' trades
can be done off-line using dynamic programming or batch versions of recurrent
reinforcement learning algorithms. Here we do the optimization on-line using a
reinforcement learning technique. This reinforcement learning algorithm is based
on stochastic gradient ascent. The gradient of Ur with respect to the parameters 8
of the system after a sequence of T trades is

dUz (6) }T:dUT {dR;@ dR, dF,_l}

dd 4~ dR, | dF, d0 ' dF,_, d@

(6)

t=1

A simple on-line stochastic optimization can be obtained by considering only the
term in (6) that depends on the most recently realized return R, during a forward
pass through the data:

dUy(0) _ dU; [dR.dF, _ dR, dF,_,
d8 ~ dR, | dF, d# ' dF,_, d#@

(7)

The parameters are then updated on-line using Af; = pdU,(6:)/d8;. Because of the
recurrent structure of the problem (necessary when transaction costs are included),
we use a reinforcement learning algorithm based on real-time recurrent learning
(Williams & Zipser 1989). This approach, which we call recurrent reinforcement
learning (RRL), is described in (Moody & Wu 1997, Moody et al. 1998) along with
extensive simulation results.

4 Empirical Results: S&P 500 / TBill Asset Allocation

A long/short trading system is trained on monthly S&P 500 stock index and 3-
month TBill data to maximize the differential Sharpe ratio. The S&P 500 target
series is the total return index computed by reinvesting dividends. The 84 input
series used in the trading systems include both financial and macroeconomic data.
All data are obtained from Citibase, and the macroeconomic series are lagged by
one month to reflect reporting delays.

A total of 45 years of monthly data are used, from January 1950 through December
1994. The first 20 years of data are used only for the initial training of the system.
The test period is the 25 year period from January 1970 through December 1994.
The experimental results for the 25 year test period are true er ante simulated
trading results.

For each year during 1970 through 1994, the system is trained on a moving window
of the previous 20 years of data. For 1970, the system is initialized with random
parameters. For the 24 subsequent years, the previously learned parameters are
used to initialize the training. In this way, the system is able to adapt to changing
market and economic conditions. Within the moving training window, the “RRL”
systems use the first 10 years for stochastic optimization of system parameters, and
the subsequent 10 years for validating early stopping of training. The networks
are linear, and are regularized using quadratic weight decay during training with a












