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Abstract 
Dyadzc data refers to a domain with two finite sets of objects in 
which observations are made for dyads , i.e., pairs with one element 
from either set. This type of data arises naturally in many ap
plication ranging from computational linguistics and information 
retrieval to preference analysis and computer vision . In this paper, 
we present a systematic, domain-independent framework of learn
ing from dyadic data by statistical mixture models. Our approach 
covers different models with fiat and hierarchical latent class struc
tures. We propose an annealed version of the standard EM algo
rithm for model fitting which is empirically evaluated on a variety 
of data sets from different domains. 

1 Introduction 

Over the past decade learning from data has become a highly active field of re
search distributed over many disciplines like pattern recognition, neural compu
tation , statistics, machine learning, and data mining. Most domain-independent 
learning architectures as well as the underlying theories of learning have been fo
cusing on a feature-based data representation by vectors in an Euclidean space. For 
this restricted case substantial progress has been achieved. However, a variety of 
important problems does not fit into this setting and far less advances have been 
made for data types based on different representations. 

In this paper, we will present a general framework for unsupervised learning from 
dyadic data . The notion dyadic refers to a domain with two (abstract) sets of ob
jects, ;r = {Xl , ... , XN} and Y = {YI, ... , YM} in which observations S are made for 
dyads (Xi, Yk). In the simplest case - on which we focus - an elementary observation 
consists just of (Xi, Yk) itself, i.e., a co-occurrence of Xi and Yk, while other cases 
may also provide a scalar value Wik (strength of preference or association). Some ex
emplary application areas are: (i) Computational linguistics with the corpus-based 
statistical analysis of word co-occurrences with applications in language modeling , 
word clustering, word sense disambiguation , and thesaurus construction. (ii) Text
based znJormatzon retrieval, where ,:{, may correspond to a document collection , Y 



Learningfrom Dyadic Data 467 

to keywords , and (Xi, Yk) would represent the occurrence of a term Yk in a document 
Xi. (iii) Modeling of preference and consumption behavior by identifying X with in
dividuals and Y with objects or stimuli as in collaborative jilterzng. (iv) Computer 
VIS tOn , in particular in the context of image segmentation, where X corresponds to 
imagE' locations , y to discretized or categorical feature values , and a dyad (Xi , Yk) 
represents a feature Yk observed at a particular location Xi. 

2 Mixture Models for Dyadic Data 

Across different domains there are at least two tasks which playa fundamental role 
in unsupervised learning from dyadic data: (i) probabilistic modeling, i.e., learning 
a joint or conditional probability model over X xY , and (ii) structure discovery, e.g. , 
identifying clusters and data hierarchies. The key problem in probabilistic modeling 
is the data sparseness: How can probabilities for rarely observed or even unobserved 
co-occurrences be reliably estimated? As an answer we propose a model-based ap
proach and formulate latent class or mixture models . The latter have the further 
advantage to offer a unifying method for probabilistic modeling and structure dis
covery. There are at least three (four, if both variants in (ii) are counted) different 
ways of defining latent class models: 

I. The most direct way is to introduce an (unobserved) mapping c : X X Y --+ 

{Cl , . . . , CK} that partitions X x Y into K classes. This type of model is 
called aspect-based and the pre-image c- l (cO') is referred to as an aspect. 

n. Alternatively, a class can be defined as a subset of one of the spaces X (or Y 
by symmetry, yielding a different model) , i.e., C : X --+ {Cl, . .. , CK} which 
induces a unique partitioning on X x Y by C(Xi , yk) == C(Xi) . This model is 
referred to as on e-szded clustering and c-l(ca ) ~ X is called a cluster. 

Ill. If latent classes are defined for both sets, c : X --+ {ci , .. . , cK} and C : 
Y --+ {cI , . .. , cD, respectively, this induces a mapping C which is a K . L 
partitioning of X x y. This model is called two-sided clustering. 

2.1 Aspect Model for Dyadic Data 

In order to specify an aspect model we make the assumption that all co-occurrences 
in the sample set S are i.i .d. and that Xi and Yk are conditionally independent given 
the class. With parameters P(x i lca ), P(Yklca) for the class-conditional distributions 
and prior probabilities P( cO' ) the complete data probability can be written as 

P(S , c) = IT [P(Cik)P(Xilcik)P(Yklcik)t (x"Yk) , 
i,k 

(1) 

where n(xi, Yk) are the empirical counts for dyads in Sand Cik == C(Xi, Yk) . By 
summing over the latent variables C the usual mixture formulation is obtained 

P(S) = IT P(Xi, Ykt(X"Yk), where P(Xi , Yk) = L P(ca)P(xilca)P(Yk Ica ) . (2) 
i ,k a 

Following the standard Expectation Maximi zation approach for maximum likelihood 
t's timation [DE'mpster et al .. 1977], the E-step equations for the class posterior prob
abilities arE' given byl 

(3) 

1 In the case of multiple observations of dyads it has been assumed that each observation 
may have a different latent class. If only one latent class variable is introduced for each 
dyad, slightly different equations are obtained. 
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Figure 1: Some aspects of the Bible (bigrams) . 

It is straightforward to derive the M-step re-estimation formulae 
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P(ca) ex L n(xi' Yk)P{Cik = Ca}, P(xilca) ex L n(xi, Yk)P{Cik = Ca}, (4) 
i,k k 

and an analogous equation for P(Yk Ica). By re-parameterization the aspect model 
can also be characterized by a cross-entropy criterion. Moreover, formal equiva
lence to the aggregate Markov model, independently proposed for language model
ing in [Saul, Pereira, 1997], has been established (cf. [Hofmann, Puzicha, 1998] for 
details). 

2.2 One-Sided Clustering Model 

The complete data model proposed for the one-sided clustering model is 

P(S, c) = P( c)P(SIc) = (If P( c(x;)) ) (IT [P( x;)P(Y' Ic( X;))]n(x",,)) , (5) 

where we have made the assumption that observations (Xi, Yk) for a particular Xi 
are conditionally independent given c( xd . This effectively defines the mixture 

P(S) = IT P(S;) , P(S;) = L P(ca) IT [P(XdP(Yklea)r(X"Yk) , (6) 
a k 

where Si are all observations involving Xi. Notice that co-occurrences in Si are not 
independent (as they are in the aspect model) , but get coupled by the (shared) 
latent variable C(Xi). As before, it is straightforward to derive an EM algorithm 
with update equations 

P{ c( Xi) = Ca } ex P( Ca) IT P(Yk Icat(x. ,Yk), P(Yk lea) ex L n(Xi, Yk )P{ c( Xi) = ca } (7) 
k 

and P(ca) ex Li P{C(Xi) = cal, P(Xi) ex Lj n(xi,Yj)· The one-sided clustering 
model is similar to the distributional clustering model [Pereira et al. , 1993], how
ever, there are two important differences: (i) the number of likelihood contributions 
in (7) scales with the number of observations - a fact which follows from Bayes' rule 
- and (ii) mixing proportions are rpissing in the original distributional clustering 
model. The one-sided clustering model corresponds to an unsupervised version of 
the naive Bayes' classifier, if we interpret Y as a feature space for objects Xi EX . 
There are also ways to weaken the conditional independence assumption, e.g., by 
utilizing a mixture of tree dependency models [Meila, Jordan, 1998] . 

2.3 Two-Sided Clustering Model 

The latent variable structure of the two-sided clustering model significantly reduces 
the degrees of freedom in the specification of the class conditional distribution. We 
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Figure 2: Exemplary segmentation results on Aerial by one-sided clustering. 

propose the following complete data model 

P(S, c) = II P(C(Xi))P(C(Yk)) [P(xi)P(Yk)1Tc(xi),c(YIc)f(x"yIc) (8) 
i,k 

where 1Tc:r: cll are cluster association parameters. In this model the latent variables 
0" "Y 

in the X and Y space are coupled by the 1T-parameters. Therefore, there exists 
no simple mixture model representation for P(S). Skipping some of the technical 
details (cf. [Hofmann, Puzicha, 1998]) we obtain P(Xi) ex Lk n(xi,Yk), P(Yk) ex 
Li n(xi' Yk) and the M-step equations 

L i k n(xi, Yk)P{C(Xi) = c~ /\ C(Yk) = c~} 
1Tc~.c~ = [Li P{C(Xi) = ~;} Lk n(xi, Yk)] [Lk P{C(Yk) = cn Li n(xi, Yk)] (9) 

as well as P(c~) = L i P{C(Xi) = c~} and P(c~) = Lk P{C(Xk) = cn . To preserve 
tractability for the remaining problem of computing the posterior probabilities in 
the E-step , we apply a factorial approximation (mean field approximation), i.e., 
P{C(Xi ) = c~ /\ C(Yk) = cO ~ P{C(Xi) = c~}P{C(Yk) = cn. This results in the 
following coupled approximation equations for the marginal posterior probabilities 

P{ c(x;) = c~} ex P(c~) exp [~n(x;, y,) ~ PI cry,) = c'(} log "'~"~ 1 (10) 

and a similar equation for P {C(Yk) = c~}. The resulting approximate EM algorithm 
performs updates according to the sequence (CX- post., 1T, cLpost., 1T). Intuitively 
the (probabilistic) clustering in one set is optimized in alternation for a given clus
tering in the other space and vice versa. The two-sided clustering model can also 
be shown to maximize a mutual information criterion [Hofmann, Puzicha, 1998] . 

2.4 Discussion: Aspects and Clusters 

To better understand the differences of the presented models it is elucidating to 
systematically compare the conditional probabilities P( CO' Ixd and P( CO' IYk): 

Aspect One-sided One-sided Two-sided 
Model X Clustering Y Clustering Clustering 

P(colxd P{x.ico' W{co' 2 P{c(xd = cO'} P{xdcO' W{ CO' 2 P{C(Xi) = c~} P(x,) P(x.) 

P(CoIYk ) P~lf.k Ic", W( c'" 2 P(lf.kl cO' )P(cO' 2 P{C(Yk) = cO'} P{C(Yk) = c~} P(Y k) P(Yk) 

As can be seen from the above table, probabilities P(CoIXi) and P(CaIYk) correspond 
to posterior probabilities of latent variables if clusters are defined in the X-and 
Y-space, respectively. Otherwise, they are computed from model parameters. This 
is a crucial difference as, for example, the posterior probabilities are approaching 
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Figure 3: Two-sided clustering of LOB: 7r matrix and most probable words. 

Boolean values in the infinite data limit and P(Yklxd = Lo P{C(Xi)=Co}P(Yk!co) 
are converging to one of the class-conditional distributions. Yet, in the aspect model 
P(Yklxd = Lo P(CoIXi)P(Yk!co) and P(CoIXi) ex: P(Co)P(Xi!co) are typically not 
peaking more sharply with an increasing number of observations. In the aspect 
model, conditionals P(Yk IXi) are inherently a weighted sum of the 'prototypical' 
distributions P(Yk Ico ). Cluster models in turn ultimately look for the 'best' class
conditional and weights are only indirectly induced by the posterior uncertainty. 

3 The Cluster-Abstraction Model 

The models discussed in Section 2 all define a non-hierarchical, 'flat' latent class 
structure. However, for structure discovery it is important to find hierarchical data 
organizations. There are well-known architectures like the Hierarchical Mixtures 
of Experts [Jordan, Jacobs, 1994] which fit hierarchical models. Yet, in the case 
of dyadic data there is an alternative possibility to define a hierarchical model. 
The Cluster-Abstraction Model (CAM) is a clustering model (e.g., in X) where 
the conditionals P(Yk Ico) are itself xi-specific aspect mixtures, P(Yk leo, Xi) = 
LII P(Yk lall )P( alllco, Xi) with a latent aspect mapping a. To obtain a hierarchi
cal organization, clusters Co are identified with the terminal nodes of a hierarchy 
(e.g., a complete binary tree) and aspects all with inner and terminal nodes. As 
a compatibility constraint it is imposed that P( all/co, xd = 0 whenever the node 
corresponding to all is not on the path to the terminal node co. Intuitively, con
ditioned on a 'horizontal' clustering c all observations (Xi, Yk) E Si for a particular 
Xi have to be generated from one of the 'vertical' abstraction levels on the path to 
c( Xi)' Since different clusters share aspects according to their topological relation, 
this favors a meaningful hierarchical organization of clusters. Moreover, aspects at 
inner nodes do not simply represent averages over clusters in their subtree as they 
are forced to explicitly represent what is common to all subsequent clusters. 

Skipping the technical details, the E-step is given by 

P{a(xi,Yk) = all/c(xi) = co} ex: P(alllco,xi)P(Yk/all) (11) 

P{ C(Xi) = co} ex: P( co) II L [P( alllco, Xi)P(Yk /a ll )r(X"Yk) (12) 
k II 

and the M-step formulae are P(Yk/all) ex: LiP{a(xi,Yk) = all}n(xi,Yk), P(co) ex: 
Li P{C(Xi) = co}, and P(alllco, Xi) ex: Lk P{a(xi ' Yk) = all/c(xi) = co}n(xi, Yk)' 






