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Abstract

We propose a new in-sample cross validation based method (randomized
GACYV) for choosing smoothing or bandwidth parameters that govern the
bias-variance or fit-complexity tradeoff in ‘soft’ classification. Soft clas-
sification refers to a learning procedure which estimates the probability
that an example with a given attribute vector is in class 1 vs class 0. The
target for optimizing the the tradeoff is the Kullback-Liebler distance
between the estimated probability distribution and the ‘true’ probabil-
ity distribution, representing knowledge of an infinite population. The
method uses a randomized estimate of the trace of a Hessian and mimics
cross validation at the cost of a single relearning with perturbed outcome
data.

1 INTRODUCTION

We propose and test a new in-sample cross-validation based method for optimizing the bias-
variance tradeoff in ‘soft classification” (Wahba et al 1994), called ranGACYV (randomized
Generalized Approximate Cross Validation). Summarizing from Wahba et al(1994) we are
given a training set consisting of n examples, where for each example we have a vector
t € T of attribute values, and an outcome y, which is either O or 1. Based on the training
data it is desired to estimate the probability p of the outcome 1 for any new examples in the
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future. In ‘soft’ classification the estimate p(t) of p(t) is of particular interest, and might be
used by a physician to tell patients how they might modify their risk p by changing (some
component of) ¢, for example, cholesterol as a risk factor for heart attack. Penalized like-
lihood estimates are obtained for p by assuming that the logit f(¢),t € 7, which satisfies
p(t) = ef® /(1 + ef®) is in some space H of functions. Technically H is a reproducing
kernel Hilbert space, but you don’t need to know what that is to read on. Let the training
setbe {y;,ti,i = 1,---,n}. Letting f; = f(¢;), the negative log likelihood £{y;, t;, fi} of
the observations, given f is

L{vite, fi} = Z (—vifi + b(fi)], (1)

=1

where b(f) = log(1 + ef). The penalized likelihood estimate of the function f is the
solution to: Find f € H to minimize I, (f):

= Yo lwifi + ()] + Ja(f), @)

where Jy(f) is a quadratic penalty functional depending on parameter(s) A = (A, ..., Aq)
which govern the so called bias-variance tradeoff. Equivalently the components of A con-
trol the tradeoff between the complexity of f and the fit to the training data. In this paper we
sketch the derivation of the ranG AC'V method for choosing A, and present some prelim-
inary but favorable simulation results, demonstrating its efficacy. This method is designed
for use with penalized likelihood estimates, but it is clear that it can be used with a variety
of other methods which contain bias-variance parameters to be chosen, and for which mini-
mizing the Kullback-Liebler (K L) distance is the target. In the work of which this is a part,
we are concerned with A having multiple components. Thus, it will be highly convenient
to have an in-sample method for selecting A, if one that is accurate and computationally
convenient can be found.

Let p,\ be the the estimate and p be the ‘true’ but unknown probability function and let
pi = p(ti),pri = pa(t:). For in-sample tuning, our criteria for a good choice of A is

the K L distance K L(p,p) = 3 21, [pilog Z- + (1 —pz)Iog%] We may replace
K L(p, p») by the comparative KL distance (CKL), which differs from K L by a quantity
which does not depend on A. Letting fx; = fi(t;), the CK L is given by

n

CKL(p,ps) = CKL(Y) = 3 3 [-pifai + WSl o

i=1

CK L()) depends on the unknown p, and it is desired is to have a good estimate or proxy
for it, which can then be minimized with respect to A.

It is known (Wong 1992) that no exact unbiased estimate of C K L(A) exists in this case, so
that only approximate methods are possible. A number of authors have tackled this prob-
lem, including Utans and Moody(1993), Liu(1993), Gu(1992). The iterative U BR method
of Gu(1992) is included in GRKPACK (Wang 1997), which implements general smooth-
ing spline ANOVA penalized likelihood estimates with multiple smoothing parameters. It
has been successfully used in a number of practical problems, see, for example, Wahba
et al (1994,1995). The present work represents an approach in the spirit of GRKPACK
but which employs several approximations, and may be used with any data set, no matter
how large, provided that an algorithm for solving the penalized likelihood equations, either
exactly or approximately, can be implemented.
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2 THE GACV ESTIMATE

In the general penalized likelihood problem the minimizer fy(-) of (2) has a representation

M n
A(E) =D dugu(t) + ) ciQa(tirt) )
=1 i=1

where the ¢, span the null space of Jy, @x(s,?) is a reproducing kernel (positive definite
function) for the penalized part of H, and ¢ = (¢, -+, ¢,)’ satisfies M linear conditions,
so that there are (at most) n free parameters in fy. Typically the unpenalized functions
¢, are low degree polynomials. Examples of Q(t;,-) include radial basis functions and
various kinds of splines; minor modifications include sigmoidal basis functions, tree basis
functions and so on. See, for example Wahba(1990,1995), Girosi, Jones and Poggio(1995).
If fx(-) is of the form (4) then Jy(fy) is a quadratic form in ¢. Substituting (4) into (2)
results in 7y a convex functional in ¢ and d, and ¢ and d are obtained numerically via a
Newton Raphson iteration, subject to the conditions on ¢. For large n, the second sum on
the right of (4) may be replaced by Zle ci, @ (i, t), where the t;, are chosen via one
of several principled methods.

To obtain the GACV we begin with the ordinary leaving-out-one cross validation function
CV(A) forthe CKL:

i
vy =~ ;[—y,:fi,- T o)), (s)
where f[ the solution to the variational problem of (2) with the ith data point left out

and fA is the value of f[ T at t;. Although fy(-) is computed by solving for ¢ and d
the GACYV is derived in terms of the values (f;, -, fu)' of f at the t;. Where there is

no confusion between functions f(-) and vectors (fi,---, fn)' of values of f atty,---,tn,
welet f = (fi1,--+,, fa)". Forany f(-) of the form (4), J»(f) also has a representation as
a non-negative definite quadratic form in (f;,---, f,)". Letting £ be twice the matrix of
this quadratic form we can rewrite (2) as
mn
1

I(f,9) = D _[~wifi + b(f)] + 3. (6)

i=1

Let W = W(f) be the n x n diagonal matrix with o;; = p;(1 — p;) in the iith position.
Using the fact that o;; is the second derivative of b(f;), we have that H = [W + ;]!
is the inverse Hessian of the variational problem (6). In Xiang and Wahba (1996), several
Taylor series approximations, along with a generalization of the leaving-out-one lemma
(see Wahba 1990) are applied to (5) to obtain an approximate cross validation function
ACV (A), which is a second order approximation to C'V (A). Letting h;; be the iith entry
of H, the result is

s _ l - L F - Hy‘l Yi — p)\t)
V)& ACVO) = 1 il + A+ Zj i s R O
Then the GACV is obtained from the ACV by replacing h;; by £ Y"1 | hi; = Ltr(H)
and replacing 1 — h;;0;; by Ltr[l — (WY/2HW'/2)], giving

H i1 Yi(yi — Pxi
GACV(N) = %;pyinf- +b(fa0)] + “’L ) tr[%:(‘pf/fi’z pr/.’;,)z)] . ®

where W is evaluated at fy. Numerical results based on an exact calculation of (8) appear
in Xiang and Wahba (1996). The exact calculation is limited to small » however.
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3 THE RANDOMIZED GACYV ESTIMATE

Given any ‘black box’ which, given A, and a training set {y;, t; } produces fy(-) as the min-
imizer of (2), and thence fy = (fa1,-*+, fan)', we can produce randomized estimates of
trH and tr[I — W'/2 HW1/2] without having any explicit calculations of these matrices.
This is done by running the ‘black box’ on perturbed data {y; + d;,t;}. For the y; Gaus-
sian, randomized trace estimates of the Hessian of the variational problem (the ‘influence
matrix’) have been studied extensively and shown to be essentially as good as exact calcu-
lations for large n, see for example Girard(1998). Randomized trace estimates are based
on the fact that if A is any square matrix and ¢ is a zero mean random n-vector with inde-
pendent components with variance o2, then E§'AJ = ;lgtrA. See Gong et al(1998) and

references cited there for experimental results with multiple regularization parameters. Re-
turning to the 0-1 data case, it is easy to see that the minimizer f(-) of I is continuous in
y, not withstanding the fact that in our training set the y; take on only values 0 or 1. Letting

f = (fa1,--+, fan)' be the minimizer of (6) giveny = (y1,---,¥yn)’, and ff"'& be the
minimizer givendata y+4 = (y;1+01, -+, yn+6,)’ (the t; remain fixed), Xiang and Wahba

(1997) show, again using Taylor series expansions, that ny”j L~ [W(f) + Ea]7 16
This suggests that 76’( fYH — fY) provides an estimate of tr[W (f}) + £,]~1. However,
if we take the Solunon f3 to the nonlinear system for the original data y as the initial value

for a Newton-Raphson calculation of ff‘“ﬁ things become even simpler. Applying a one
step Newton-Raphson iteration gives

+61 _ YN
Since §2(fl,y +8) = -6 + _B_I.a(f”y) —4§, and [af af(f)wy + ) =

[af 6f(fl y)] 1’ we havc fy+61 = f)\ Bf 3f(f‘\sy)] }6 SO that fy+6] f)\ =
[W(fY) + Ea]7'4. The result is the following ranGACV function:

§(fI - f) Sor L ilyi — pai)

ranGACV (\) = %Z[—yif,\i‘f'b(f)\i)]

- n (66 — oW (£ = £
(10)
To reduce the variance in the term after the ‘+’ in (10), we may draw R
independent replicate vectors d;,---,0r, and replace the term after the ‘+ in
1 =R S (fyHird_ gy or  wilm—pa) : .
(10)by £ >,y =2— [a*a,—.s*w(f,\}(f"“ T to obtain an R-replicated

ranGACYV (A) function.

4 NUMERICAL RESULTS

In this section we present simulation results which are representative of more extensive
simulations to appear elsewhere. In each case, K << n was chosen by a sequential clus-
tering algorithm. In that case, the t; were grouped into K clusters and one member of each
cluster selected at random. The model is fit. Then the number of clusters is doubled and the
model is fit again. This procedure continues until the fit does not change. In the randomized
trace estimates the random variates were Gaussian. Penalty functionals were (multivariate

generalizations of) the cubic spline penalty functional A fol (f"(x))?, and smoothing spline
ANOVA models were fit.












