
Learning Continuous Attractors in
Recurrent Networks

H. Sebastian Seung
Bell Labs, Lucent Technologies

Murray Hill, NJ 07974
seung~bell-labs.com

Abstract

One approach to invariant object recognition employs a recurrent neu
ral network as an associative memory. In the standard depiction of the
network's state space, memories of objects are stored as attractive fixed
points of the dynamics. I argue for a modification of this picture: if an
object has a continuous family of instantiations, it should be represented
by a continuous attractor. This idea is illustrated with a network that
learns to complete patterns. To perform the task of filling in missing in
formation, the network develops a continuous attractor that models the
manifold from which the patterns are drawn. From a statistical view
point, the pattern completion task allows a formulation of unsupervised
learning in terms of regression rather than density estimation.

A classic approach to invariant object recognition is to use a recurrent neural net
work as an associative memory[l]. In spite of the intuitive appeal and biological
plausibility of this approach, it has largely been abandoned in practical applications.
This paper introduces two new concepts that could help resurrect it: object repre
sentation by continuous attractors, and learning attractors by pattern completion.

In most models of associative memory, memories are stored as attractive fixed points
at discrete locations in state space[l]. Discrete attractors may not be appropriate for
patterns with continuous variability, like the images of a three-dimensional object
from different viewpoints. When the instantiations of an object lie on a continuous
pattern manifold, it is more appropriate to represent objects by attractive manifolds
of fixed points, or continuous attractors.

To make this idea practical, it is important to find methods for learning attractors
from examples. A naive method is to train the network to retain examples in short
term memory. This method is deficient because it does not prevent the network
from storing spurious fixed points that are unrelated to the examples. A superior
method is to train the network to restore examples that have been corrupted, so
that it learns to complete patterns by filling in missing information.

Learning Continuous Attractors in Recurrent Networks 655

(a) (b)

Figure 1: Representing objects by dynamical attractors. (a) Discrete attractors.
(b) Continuous attractors.

Learning by pattern completion can be understood from both dynamical and sta
tistical perspectives. Since the completion task requires a large basin of attraction
around each memory, spurious fixed points are suppressed. The completion task
also leads to a formulation of unsupervised learning as the regression problem of
estimating functional dependences between variables in the sensory input.

Density estimation, rather than regression, is the dominant formulation of unsuper
vised learning in stochastic neural networks like the Boltzmann machine[2] . Density
estimation has the virtue of suppressing spurious fixed points automatically, but it
also has the serious drawback of being intractable for many network architectures.
Regression is a more tractable, but nonetheless powerful, alternative to density
estimation.

In a number of recent neurobiological models, continuous attractors have been used
to represent continuous quantities like eye position-[3], direction of reaching[4], head
direction[5], and orientation of a visual stimulus[6]. Along with these models, the
present work is part of a new paradigm for neural computation based on continuous
attractors.

1 DISCRETE VERSUS CONTINUOUS ATTRACTORS

Figure 1 depicts two ways of representing objects as attractors of a recurrent neural
network dynamics. The standard way is to represent each object by an attractive
fixed point[l], as in Figure 1a. Recall of a memory is triggered by a sensory input,
which sets the initial conditions. The network dynamics converges to a fixed point,
thus retrieving a memory. If different instantiations of one object lie in the same
basin of attraction, they all trigger retrieval of the same memory, resulting in the
many-to-one map required for invariant recognition.

In Figure 1b, each object is represented by a continuous manifold of fixed points.
A one-dimensional manifold is shown, but generally the attractor should be mul
tidimensional, and is parametrized by the instantiation or pose parameters of the
object . For example, in visual object recognition, the coordinates would include the
viewpoint from which the object is seen.

The reader should be cautioned that the term "continuous attractor" is an idealiza
tion and should not be taken too literally. In real networks, a continuous attractor
is only approximated by a manifold in state space along which drift is very slow.
This is illustrated by a simple example, a descent dynamics on a trough-shaped
energy landscape[3]. If the bottom of the trough is perfectly level, it is a line of
fixed points and an ideal continuous attract or of the dynamics. However, any slight
imperfections cause slow drift along the line. This sort of approximate continuous
attract or is what is found in real networks, including those trained by the learning

656 H S. Seung

(a) hidden layer (b)

~
visible layer

Figure 2: (a) Recurrent network. (b) Feedforward autoencoder.

algorithms to be discussed below.

2 DYNAMICS OF MEMORY RETRIEVAL

The preceding discussion has motivated the idea of representing pattern manifolds
by continuous attractors. This idea will be further developed with the simple net
work shown in Figure 2a, which consists of a visible layer Xl E Rnl and a hidden
layer X2 E Rn2. The architecture is recurrent, containing both bottom-up con
nections (the n2 x nl matrix W2d and top-down connections (the nl x n2 matrix
WI2). The vectors bl and b2 represent the biases ofthe neurons. The neurons have
a rectification nonlinearity [x]+ = max{x, O}, which acts on vectors component by
component.

There are many variants of recurrent network dynamics: a convenient choice is the
following discrete-time version, in which updates of the hidden and visible layers
alternate in time. After the visible layer is initialized with the input vector Xl (0),
the dynamics evolves as

X2(t) = [b2 + W2IXI(t -1)]+ ,
Xl (t) = [bl + W12X2(t)]+ .

(1)

If memories are stored as attractors, iteration of this dynamics can be regarded as
memory retrieval.

Activity circulates around the feedback loop between the two layers. One iteration
of this loop is the map Xl(t - 1) ~ X2(t) ~ Xl(t). This single iteration is equiv
alent to the feedforward architecture of Figure 2b. In the case where the hidden
layer is smaller than the visible layers, this architecture is known as an auto en
coder network[7]. Therefore the recurrent network dynamics (1) is equivalent to
repeated iterations of the feedforward autoencoder. This is just the standard trick
of unfolding the dynamics of a recurrent network in time, to yield an equivalent
feedforward network with many layers[7]. Because of the close relationship between
the recurrent network of Figure 2a and the autoencoder of Figure 2b, it should not
be surprising that learning algorithms for these two networks are also related, as
will be explained below.

3 LEARNING TO RETAIN PATTERNS

Little trace of an arbitrary input vector Xl (0) remains after a few time steps of the
dynamics (1). However, the network can retain some input vectors in short-term
memory as "reverberating" patterns of activity. These correspond to fixed points of
the dynamics (1); they are patterns that do not change as activity circulates around
the feedback loop.

Learning Continuous Attraclors in Recurrent Networlcs 657

This suggests a formulation of learning as the optimization of the network's ability to
retain examples in short-term memory. Then a suitable cost function is the squared
difference IXI (T) - Xl (0)12 between the example pattern Xl (0) and the network's
short-term memory Xl (T) of it after T time steps. Gradient descent on this cost
function can be done via backpropagation through time[7].

If the network is trained with patterns drawn from a continuous family, then it can
learn to perform the short-term memory task oy developing a continuous attractor
that lies near the examples it is trained on. When the hidden layer is smaller than
the visible layer, the dimensionality of the attractor is limited by the size of the
hidden layer.

For the case of a single time step (T = 1), training the recurrent network of Figure
2a to retain patterns is equivalent to training the autoencoder of Figure 2b by
minimizing the squared difference between its input and output layers, averaged
over the examples[8]. From the information theoretic perspective, the small hidden
layer in Figure 2b acts as a bottleneck between the input and output layers, forcing
the autoencoder to learn an efficient encoding of the input.

For the special case of a linear network, the nature of the learned encoding is
understood completely. Then the input and output vectors are related by a simple
matrix multiplication. The rank of the matrix is equal to the number of hidden
units. The average distortion is minimized when this matrix becomes a projection
operator onto the subspace spanned by the principal components of the examples[9].

From the dynamical perspective, the principal subspace is a continuous attractor
of the dynamics (1). The linear network dynamics converges to this attractor in
a single iteration, starting from any initial condition. Therefore we can interpret
principal component analysis and its variants as methods of learning continuous
attractors[lO].

4 LEARNING TO COMPLETE PATTERNS

Learning to retain patterns in short-term memory only works properly for architec
tures with a small hidden layer. The problem with a large hidden layer is evident
when the hidden and visible layers are the same size, and the neurons are linear.
Then the cost function for learning can be minimized by setting the weight matrices
equal to the identity, W21 = Wl2 = I. For this trivial minimum, every input vector
is a fixed point of the recurrent network (Figure 2a), and the equivalent feedforward
network (Figure 2b) exactly realizes the identity map. Clearly these networks have
not learned anything.

Therefore in the case of a large hidden layer, learning to retain patterns is inad
equate. Without the bottleneck in the architecture, there is no pressure on the
feedforward network to learn an efficient encoding. Without constraints on the di
mension of the attractor, the recurrent network develops spurious fixed points that
have nothing to do with the examples.

These problems can be solved by a different formulation of learning based on the
task of pattern completion. In the completion task of Figure 3a, the network is
initialized with a corrupted version of an example. Learning is done by minimizing
the completion error, which is the squared difference IXI (T) - dl 2 between the uncor
rupted pattern d and the final visible vector Xl (T). Gradient descent on completion
error can be done with backpropagation through time[ll].

This new formulation of learning eliminates the trivial identity map solution men-

658

(a) �~�1� retention. �~�1�
L _ .. _

�~� �c�o�m�p�l�e�t�i�o�~� �~� 1
It �~� It ___

(b) topographic feature map

9x9 patch
missing

sensory
Input

retrieved
memory

H. S. Seung

Figure 3: (a) Pattern retention versus completion. (b) Dynamics of pattern com
pletion.

(b)

5x5 receptive fields

Figure 4: (a) Locally connected architecture. (b) Receptive fields of hidden neurons.

tioned above: while the identity network can retain any example, it cannot restore
corrupted examples to their pristine form. The completion task forces the network
to enlarge the basins of attraction of the stored memories, which suppresses spuri
ous fixed points. It also forces the network to learn associations between variables
in the sensory input.

5 LOCALLY CONNECTED ARCHITECTURE

Experiments were conducted with images of handwritten digits from the USPS
database described in [12]. The example images were 16 x 16, with a gray scale
ranging from a to 1. The network was trained on a specific digit class, with the
goal of learning a single pattern manifold. Both the network architecture and the
nature of the completion task were chosen to suit the topographic structure present
in visual images.

The network architecture was given a topographic organization by constraining the
synaptic connectivity to be local, as shown in Figure 4a. Both the visible and hidden
layers of the network were 16 x 16. The visible layer represented an image, while
the hidden layer was a topographic feature map. Each neuron had 5 x 5 receptive
and projective fields, except for neurons near the edges, which had more restricted
connectivity.

In the pattern completion task, example images were corrupted by zeroing the
pixels inside a 9 x 9 patch chosen at a random location, as shown in Figure 3a.
The location of the patch was randomized for each presentation of an example.
The size of the patch was a substantial fraction of the 16 x 16 image, and much
larger than the 5 x 5 receptive field size. This method of corrupting the examples
gave the completion task a topographic nature, because it involved a set of spatially
contiguous pixels. This topographic nature would have been lacking if the examples
had been corrupted by, for example, the addition of spatially uncorrelated noise.

Figure 3b illustrates the dynamics of pattern completion performed by a network

