Salient Contour Extraction by Temporal Binding in a Cortically-Based Network

Shih-Cheng Yen and Leif H. Finkel
Department of Bioengineering and
Institute of Neurological Sciences
University of Pennsylvania
Philadelphia, PA 19104, U. S. A.
syen@jupiter.seas.upenn.edu
leif@jupiter.seas.upenn.edu

Abstract

It has been suggested that long-range intrinsic connections in striate cortex may play a role in contour extraction (Gilbert et al., 1996). A number of recent physiological and psychophysical studies have examined the possible role of long range connections in the modulation of contrast detection thresholds (Polat and Sagi, 1993, 1994; Kapadia et al., 1995; Kovács and Julesz, 1994) and various pre-attentive detection tasks (Kovács and Julesz, 1993; Field et al., 1993). We have developed a network architecture based on the anatomical connectivity of striate cortex, as well as the temporal dynamics of neuronal processing, that is able to reproduce the observed experimental results. The network has been tested on real images and has applications in terms of identifying salient contours in automatic image processing systems.

1 INTRODUCTION

Vision is an active process, and one of the earliest, preattentive actions in visual processing is the identification of the salient contours in a scene. We propose that this process depends upon two properties of striate cortex: the pattern of horizontal connections between orientation columns, and temporal synchronization of cell responses. In particular, we propose that perceptual salience is directly related to the degree of cell synchronization.

We present results of network simulations that account for recent physiological and psychophysical "pop-out" experiments, and which successfully extract salient contours from real images.
2 MODEL ARCHITECTURE

Linear quadrature steerable filter pyramids (Freeman and Adelson, 1991) are used to model the response characteristics of cells in primary visual cortex. Steerable filters are computationally efficient as they allow the energy at any orientation and spatial frequency to be calculated from the responses of a set of basis filters. The fourth derivative of a Gaussian and its Hilbert transform were used as the filter kernels to approximate the shape of the receptive fields of simple cells.

The model cells are interconnected by long-range horizontal connections in a pattern similar to the co-circular connectivity pattern of Parent and Zucker (1989), as well as the "association field" proposed by Field et al. (1993). For each cell with preferred orientation, θ, the orientations, ϕ, of the pre-synaptic cell at position (i,j) relative to the post-synaptic cell, are specified by:

$$\phi(\theta, i, j) = 2 \tan^{-1}\left(\frac{i}{j}\right) - \theta$$

(see Figure 1a). These excitatory connections are confined to two regions, one flaring out along the axis of orientation of the cell (co-axial), and another confined to a narrow zone extending orthogonally to the axis of orientation (trans-axial). The fan-out of the co-axial connections is limited to low curvature deviations from the orientation axis while the trans-axial connections are limited to a narrow region orthogonal to the cell's orientation axis. These constraints are expressed as:

$$\Gamma(\theta, i, j, \psi) = \begin{cases} 1, & \text{if } \tan^{-1}\left(\frac{i}{j}\right) - \theta < \kappa, \\ 1, & \text{if } \tan^{-1}\left(\frac{i}{j}\right) - \theta = \frac{\pi}{2} \pm \varepsilon, \\ 0, & \text{otherwise.} \end{cases}$$

where κ represents the maximum angular deviation from the orientation axis of the post-synaptic cell and ε represents the maximum angular deviation from the orthogonal axis of the post-synaptic cell. Connection weights decrease for positions with increasing angular deviation from the orientation axis of the cell, as well as positions with increasing distance, in agreement with the physiological and psychophysical findings. Figure 1b illustrates the connectivity pattern. There is physiological, anatomical and psychophysical evidence consistent with the existence of both sets of connections (Nelson and Frost, 1985; Kapadia et al., 1995; Rockland and Lund, 1983; Lund et al., 1985; Fitzpatrick, 1996; Polat and Sagi, 1993, 1994).

Cells that are facilitated by the connections inhibit neighboring cells that lie outside the facilitatory zones. The magnitude of the inhibition is such that only cells receiving strong support are able to remain active. This is consistent with the physiological findings of Nelson and Frost (1985) and Kapadia et al. (1995) as well as the intra-cellular recordings of Weliky et al. (1995) which show EPSPs followed by IPSPs when the long-distance connections were stimulated. This inhibition is thought to occur through disynaptic pathways.

In the model, cells are assumed to enter a "bursting mode" in which they synchronize with other bursting cells. In cortex, bursting has been associated with supragranular "chattering cells" (Gray and McCormick (1996). In the model, cells that enter the bursting
mode are modeled as homogeneous coupled neural oscillators with a common fundamental frequency but different phases (Kopell and Ermentrout, 1986; Baldi and Meir, 1990). The phase of each oscillator is modulated by the phase of the oscillators to which it is coupled. Oscillators are coupled only to other oscillators with which they have strong, reciprocal, connections. The oscillators synchronize using a simple phase averaging rule:

$$\Theta_i(t) = \frac{\sum w_{ij} \Theta_j(t-1)}{\sum w_{ij}}, \quad w_{ii} = 1$$

where Θ represents the phase of the oscillator and w_{ij} represents the weight of the connection between oscillator i and j. The oscillators synchronize iteratively with synchronization defined as the following condition:

$$|\Theta_i(t) - \Theta_j(t)| < \delta, \quad i, j \in C, \quad t < t_{max}$$

where C represents all the coupled oscillators on the same contour, δ represents the maximum phase difference between oscillators, and t_{max} represents the maximum number of time steps the oscillators are allowed to synchronize. The salience of the chain is then represented by the sum of the activities of all the synchronized elements in the group, C. The chain with the highest salience is chosen as the output of the network. This allows us to compare the output of the model to psychophysical results on contour extraction.

It has been postulated that the 40 Hz oscillations observed in the cortex may be responsible for perceptual binding across different cortical regions (Singer and Gray, 1995). Recent studies have questioned the functional significance and even the existence of these oscillations (Ghose and Freeman, 1992; Bair et al., 1994). We use neural oscillators only as a simple functional means of computing synchronization and make no assumption regarding their possible role in cortex.

![Figure 1: a) Co-circularity constraint. b) Connectivity pattern of a horizontally oriented cell. Length of line indicates connection strength.](image)

3 RESULTS

This model was tested by simulating a number of psychophysical experiments. A number of model parameters remain to be defined through further physiological and psychophysical experiments, thus we only attempt a qualitative fit to the data. All simulations were conducted with the same parameter set.

3.1 EXTRACTION OF SALIENT CONTOURS

Using the same methods as Field et al. (1993), we tested the model’s ability to extract contours embedded in noise (see Figure 2). Pairs of stimulus arrays were presented to the
network, one array contains a contour, the other contains only randomly oriented elements. The network determines the stimulus containing the contour with the highest salience. Network performance was measured by computing the percentage of correct detection. The network was tested on a range of stimulus variables governing the target contour: 1) the angle, β, between elements on a contour, 2) the angle between elements on a contour but with the elements aligned orthogonal to the contour passing through them, 3) the angle between elements with a random offset angle, $\pm \alpha$, with respect to the contour passing through them, and 4) average separation of the elements. 500 simulations were run at each data point. The results are shown in Figure 2. The model shows good qualitative agreement with the psychophysical data. When the elements are aligned, the performance of the network is mostly modulated by the co-axial connections, whereas when the elements are oriented orthogonal to the contour, the trans-axial connections mediate performance. Both the model and human subjects are adversely affected as the weights between consecutive elements decrease in strength. This reduces the length of the contour and thus the saliency of the stimulus.

![Figure 2: Simulation results are compared to the data from 2 subjects (AH, DJF) in Field et al. (1993). Stimuli consisted of 256 randomly oriented Gabor patches with 12 elements aligned to form a contour. Each data point represents results for 500 simulations.](image)

3.2 EFFECTS OF CONTOUR CLOSURE

In a series of experiments using similar stimuli to Field et al. (1993), Kovács and Julesz (1993) found that closed contours are much more salient than open contours. They reported that when the inter-element spacing between all elements was gradually increased, the maximum inter-element separation for detecting closed contours, Δ_c (defined at 75% performance), is higher than that for open contours, Δ_o. In addition, they showed that when elements spaced at Δ_o are added to a "jagged" (open) contour, the saliency of the contour increases monotonically but when elements spaced at Δ_c are added to a circular contour, the saliency does not change until the last element is added and the contour becomes closed. In fact, at Δ_c, the contour is not salient until it is closed, at which point it suddenly "pops-out" (see Figure 3c). This finding places a strong constraint on the computation of saliency in visual perception.

Interestingly, it has been shown that synchronization in a chain of coupled neural oscillators is enhanced when the chain is closed (Kopell and Ermentrout, 1986; Ermentrout, 1985; Somers and Kopell, 1993). This property seems to be related to the differences in boundary effects on synchronization between open and closed chains and appears to hold across different families of coupled oscillators. It has also been shown that synchronization is dependent on the coupling between oscillators -- the stronger the coupling, the better the synchronization, both in terms of speed and coherence (Somers...
and Kopell, 1993; Wang, 1995). We believe these findings may apply to the psychophysical results.

As in Kovács and Julesz (1993), the network is presented with two stimuli, one containing a contour and the other made up of all randomly oriented elements. The network picks the stimulus containing the synchronized contour with the higher salience. In separate trials, the threshold for maximum separation between elements was determined for open and closed contours. The ratio of the separation of the background elements to the that of elements on a closed curve, ϕ_c, was found to be 0.6 (which is similar to the threshold of 0.65 recently reported by Kovács et al., 1996), whereas the ratio for open contours, ϕ_o, was found to be 0.9. (Δ is the threshold separation of contour elements, ϕ, at a particular background separation). We then examined the changes in salience for open and closed contours. The performance of the network was measured as additional elements were added to an initial short contour of elements. The results are shown in Figure 3b. At ϕ_o, both open and closed contours are synchronized but at ϕ_c, elements are synchronized only when the chains are closed. If salience can only be computed for synchronized contours, then as additional elements are added to an open chain at ϕ_o, the salience would increase since the whole chain is synchronized. On the other hand, at ϕ_c, as long as the last element is missing, the chain is really an open chain, and since ϕ_c is smaller than ϕ_o, the elements on the chain will not be able to synchronize and adding elements has no effect on salience. Once the last element is added, the chain is immediately able to synchronize and the salience of the contour increases dramatically and causes the contour to "pop-out".

3.3 REAL IMAGES

A stringent test of the model's capabilities is the ability to extract perceptually salient contours in real images. Figure 4 and 5 show results for a typical image. The original grayscale image, the output of the steerable filters, and the output of the model are shown in Figure 4a,b,c and Figure 5a,b,c respectively. The network is able to extract some of the more salient contours and ignore other high contrast edges detected by the steerable filters. Both simulations used filters at only one spatial scale and could be improved through interactions across multiple spatial frequencies. Nevertheless, the model shows promise for automated image processing applications.
4 CONCLUSION

We have presented a cortically-based model that is able to identify perceptually salient contours in images containing high levels of noise. The model is based on the use of long distance intracortical connections that facilitate the responses of cells lying along smooth contours. Salience is defined as the combined activity of the synchronized population of cells responding to a particular contour. The model qualitatively accounts for a range of physiological and psychophysical results and can be used in extracting salient contours in real images.

Acknowledgements

Supported by the Office of Naval Research (N00014-93-1-0681), The Whitaker Foundation, and the McDonnell-Pew Program in Cognitive Neuroscience.

References

PART VIII
APPLICATIONS