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Abstract 

Reinforcement learning methods for discrete and semi-Markov de­
cision problems such as Real-Time Dynamic Programming can 
be generalized for Controlled Diffusion Processes. The optimal 
control problem reduces to a boundary value problem for a fully 
nonlinear second-order elliptic differential equation of Hamilton­
Jacobi-Bellman (HJB-) type. Numerical analysis provides multi­
grid methods for this kind of equation. In the case of Learning Con­
trol, however, the systems of equations on the various grid-levels are 
obtained using observed information (transitions and local cost). 
To ensure consistency, special attention needs to be directed to­
ward the type of time and space discretization during the obser­
vation. An algorithm for multi-grid observation is proposed. The 
multi-grid algorithm is demonstrated on a simple queuing problem. 

1 Introduction 

Controlled Diffusion Processes (CDP) are the analogy to Markov Decision Problems 
in continuous state space and continuous time. A CDP can always be discretized in 
state space and time and thus reduced to a Markov Decision Problem. Algorithms 
like Q-Iearning and RTDP as described in [1] can then be applied to produce controls 
or optimal value functions for a fixed discretization. 

Problems arise when the discretization needs to be refined, or when multi-grid 
information needs to be extracted to accelerate the algorithm. The relation of 
time to state space discretization parameters is crucial in both cases. Therefore 
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a mathematical model of the discretized process is introduced, which reflects the 
properties of the converged empirical process. In this model, transition probabilities 
of the discrete process can be expressed in terms of the transition probabilities of 
the continuous process. Recent results in numerical methods for stochastic control 
problems in continuous time can be applied to give assumptions that guarantee a 
local consistency condition which is needed for convergence. The same assumptions 
allow application of multi-grid methods. 

In section 2 Controlled Diffusion Processes are introduced. A model for the dis­
cretized process is suggested in section 3 and the main theorem is stated. Section 4 
presents an algorithm for multi-grid observation according to the results in the pre­
ceding section. Section 5 shows an application of multi-grid techniques for observed 
processes. 

2 Controlled Diffusion Processes 

Consider a Controlled Diffusion Process (CDP) ~(t) in some bounded domain 0 C 

ffi. n fulfilling the diffusion equation 

~(t) = b(~(t), u(t))dt + (7(~(t))dw. (1) 

The control u(t) takes values in some finite set U. The immediate reinforcement 
(cost) for state ~(t) and control u(t) is 

r(t) = r(~(t),u(t)). (2) 

The control objective is to find a feedback control law 

u(t) = u(~(t)), (3) 

that minimizes the total discounted cost 

J(x, u) = IE~ 100 e-/3tr(~(t), u(t)dt, (4) 

where IE~ is the expectation starting in x E 0 and applying the control law u(.). 
(3 > 0 is the discount. 

The transition probabilities of the CDP are given for any initial state x E 0 and 
subset A c 0 by the stochastic kernels 

PtU(x, A) :=prob{~(t) E AI~(O) =x,u}. 

It is known that the kernels have the properties 

l (y - x)PtU(x, dy) 

l (y - x)(y - xf PtU(x, dy) 

t . b(x, u) + o(t) 

t· (7(x)(7(xf + o(t). 

(5) 

(6) 

(7) 

For the optimal control it is sufficient to calculate the optimal value function V : 
O-tffi. 

V(x) := inf J(x, u). 
u(.) 

(8) 
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Under appropriate smoothness assumptions V is a solution of the Hamilton-Jacobi­
Bellman (HJB-) equation 

min {C:tV(x) - ,i3V(x) + r(x, an = 0, x E O. 
aEU 

(9) 

Let a(x) = O"(x)O"(x)T be the diffusion matrix, then La, a E U is defined as the 
elliptic differential operator 

n n 

La := L aij(x)ox/Jx; + Lbi(x,a)oxi. (10) 
i,j=l i=l 

3 A Model for Observed CDP's 

Let Ohi be the centers of cells of a cell-centered grid on 0 with cell sizes ho, hI = 
ho/2, h2 = hI/2, .... For any x E Ohi we shall denote by A(x) the cell of x. Let 
6.t > 0 be a parameter for the time discretization. 
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Figure 1: The picture depicts three 
cell-centered grid levels and the trajec­
tory of a diffusion process. The approx­
imating value function is represented 
locally constant on each cell. The tri­
angles on the path denote the posi­
tion of the diffusion at sample times 
0, /It, 2/lt, 3/lt, . . .. Transitions be­
tween respective cells are then counted 
in matrices Q't, for each control a and 
grid i. 

By counting the transitions between cells and calculating the empirical probabilities 
as defined in (20) we obtain empirical processes on every grid. By the law of 
great numbers the empirical processes will converge towards observed CDPs as 
subsequently defined. 

Definition 1 An observed process ~hi,Lldt) is a Controlled Markov Chain (i.e. 
discrete state-space and discrete time) on Ohi and interpolation time 6.ti with the 
transition probabilities 

prob{~(6.ti) E A(Y)I~(O) E A(x), u} 

:n { PXti (z, A(y»dz, 
i J A(x) 

(11) 

where x, y E Ohi and ~(t) is a solution of (1). Also define the observed reinforcement 
p as 

(12) 
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On every grid Ohi the respective process ehi ,Llti has its own value function Vhi ,Llti . 

By theorem 10.4.1. in Kushner, Dupuis ([5], 1992) it holds, that 

Vhi,Llti (x) -+ V(x) for all x E 0, (13) 

if the following local consistency conditions hold. 

Definition 2 Let D.eh,Llt = eh,Llt(D.t) - eh,Llt(O). eh,Llt is called locally consistent 
to a solution e(.) of (1), iff 

IE~ D.eh,Llt 

IE~[D.eh,Llt - IE~D.eh,Llt][D.eh,Llt - IE~D.eh,LltlT 
sup lD.eh,Llt(nD.t) I 

n 

b(x, a)D.t + o(D.t) (14) 

a(x)D.t + o(D.t) (15) 

-+ 0 as h -+ O. (16) 

To verify these conditions for the observed CDP, the expectation and variance can 
be calculated. For the expectation we get 

L Phi,Llti(x,y)(y - x) 
yEOhi 

:n L l (y - x)PXdz,A(y))dz. (17) 
i yEOhi A(x) 

Recalling properties (6) and (7) and doing a similar calculation for the variance we 
obtain the following theorem. 

Theorem 3 For observed CDPs ehi,Llti let hi and D.ti be such that 

(18) 

Furthermore, ehi ,Llti shall be truncated at some radius R, such that R -+ 0 for 
hi -+ 0 and expectation and variance of the truncated process differ only in the 
order o(D.t) from expectation and variance of ehi,Llti. Then the observed processes 
ehi,Llti truncated at R are locally consistent to the diffusion process e(.) and therefore 
the value functions Vhi ,Llti converge to the value function V. 

4 Identification by Multi-Grid Observation 

The condition in Theorem 3 provides information as how to choose parameters in 
the algorithm with empirical data. Choose discretization values ho, D.to for the 
coarsest grid no. D.to should typically be of order Ilbllsup/ho. Then choose for the 
finer grids 

grid 

space 

time 

o 
ho 

D.to 

1 
~ 
2 

~ 
2 

2 

~ 
4 

~ 
2 

3 4 
~ 
16 
~ 

4 

5 
~ 
32 
~ 

8 

(19) 

The sequences verify the assumption (18). We may now formulate the algorithm 
for Multi-Grid Observation of the CDP e(.). Note that only observation is being 
carried out. The actual calculation of the value function may be done separately 
as described in the next section. The choice of the control is assumed to be done 
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by a separate controller. Let Ok be the finest grid, Le. Dotk and hk the finest 
discretizations. Let U, = u~t';~t,. = U x ... xU, Dotl! Dotk times. Qr' is a 10,1 x 10,1-
matrix (a, E U,), containing the number of transitions between cells in 0" Rr' is a 
lO,l-vector containing the empirical cost for every cell in 0 , . The immediate cost is 
given by the system as r, = Jo~t' e-/3tr(~(t), a,)dt. T denotes current time. 

O. Initialize 0 " Qr', Rr' for all a, E U" 1 = 0, ... , k 
1. repeat { 
2. choose a = a(T) E U and apply a constantly on [T; T + Dotk) 
3. T := T + Dotk 
4. for I = 0 to k do { 
5. determine cell Xl E 0, with ~(T - Dot,) E A(XI) 
6. determine cell Yl E 0 , with ~(T) E A(Yl) 
7. if Ilxk - Ykll ~ R (truncation radius) then goto 2. else 
8. a, := (a(T - Dot,) , a(T + Dotk - Dot,), .. . ,a(T - Dotk)) 
9. receive immediate cost r, 
10. Qr'(Xl,Yl) := Qr'(Xl,Yt) + 1 
11. Rr' (Xl) := (rl + Rr' (Xl) . EZEn, Qr' (Xl, z)) / (1 + EZEn, Qr' (Xl, z)) 

} (for-do) 
} (repeat) 

Before applying a multi-grid algorithm for the calculation of the value function on 
the basis of the observations, one should make sure that every box has at least 
some data for every control. Especially in the early stages of learning only the two 
coarsest grids 00, 0 1 could be used for computation of the optimal value function 
and finer grids may be added (possibly locally) as learning evolves. 

5 Application of Multi-Grid Techniques 

The identification algorithm produces matrices Qr' containing the number of tran­
sitions between boxes in 0 , . We will calculate from the matrices Q the transition 
matrices P by the formula 

p,a' (x, y) = Qr' (x, Y)/ (L Qr' (x, Z)) , x, Y E 0" a, E U" 1 = 0, .. . , k. (20) 
zEn, 

Now we define matrices A and right hand sides I as 

Ar' := ({31 p,a' - I) / Dot, It':= Rr' / Dotl , (21) 

where {31 = e-/3~t,. The discrete Bellman equation takes the following form 

(22) 

The problem is now in a form to which the multi-grid method due to Hoppe, BloB 
([2], 1989) can be applied. For prolongation and restriction we choose bilinear 
interpolation and full weighted restriction for cell-centered grids. We point out, 
that for any cell X E 0 , only those neighboring cells shall be used for prolongation 
and restriction for which the minimum in (22) is attained for the same control as 
the minimizing control in X (see [2], 1989 and [3], 1996 for details). On every grid 
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0 1 the defect in equation (22) is calculated and used for a correction on grid 0 /- 1 . 

As a smoother nonlinear Gauss-Seidel iteration applied to (22) is used. 

Our approach differs from the algorithm in Hoppe, BloB ([2], 1989) in the special 
form of the matrices �A�~�'� in equation (22). The stars are generally larger than 
nine-point, in fact the stars grow with decreasing h although the matrices remain 
sparse. Also, when working with empirical information the relationship between the 
matrices Ar' on the various grids is based on observation of a process, which implies 
that coarse grid corrections do not always correct the equation of the finest grid 
(especially in the early stages of learning). However, using the observed transition 
matrices Ar' on the coarse grids saves the computing time which would otherwise 
be needed to calculate these matrices by the Galerkin product (see Hackbusch [4], 
1985). 

6 Simulation with precomputed transitions 

Consider a homogeneous server problem with two servers holding data (Xl, X2) E 
[0,1] x [0,1]. Two independent data streams arrive, one at each server. A controller 
has to decide to which server to route. The modeling equation for the stream shall 
be 

dx = b(x, u)dt + CT(x)dw, u E {I, 2} (23) 

with 

b(x,l) = (!1) b(x,2) = �(�~�1�)� CT= �(�~� �~�)� (24) 

The boundaries at Xl = 0 and X2 = 0 are reflecting. The exceeding data on 
either server Xl, X2 > 1 is rejected from the system and penalized with g(Xl, 1) = 
g(1,x2) = 10, 9 = 0 otherwise. The objective of the control policy shall be to 
minimize 

IE 1000 e-i3t (xI(t) + X2(t) + g(Xl,X2))dt. (25) 

The plots of the value function show, that in case of high load (Le. Xl, X2 close to 
1) a maximum of cost is assumed. Therefore it is cheaper to overload a server and 
pay penalty than to stay close to the diagonal as is optimal in the low load case. 

For simulation we used �p�r�e�c�o�~�p�u�t�e�d� (Le. converged heuristic) transition probabili­
ties to test the multi-grid performance. The discount f3 was set to .7. The multi-grid 
algorithm reduces the error in each iteration by' a factor 0.21, using 5 grid levels 
and a V -cycle and two smoothing iterations on the coarsest grid. For comparison, 
the iteration on the finest grid converges with a reduction factor 0.63. 

7 Discussion 

We have given a condition for sampling controlled diffusion processes such that 
the value functions will converge while the discretization tends to zero. Rigorous 
numerical methods can now be applied to reinforcement learning algorithms in 
continuous-time, continuous-state as is demonstrated with a multi-grid algorithm 
for the HJB-equation. Ongoing work is directed towards adaptive grid refinement 
algorithms and application to systems that include hysteresis. 




