
Active Gesture Recognition using
Learned Visual Attention

Trevor Darrell and Alex Pentland
Perceptual Computing Group

MIT Media Lab
20 Ames Street, Cambridge MA, 02138

trevor,sandy~media.mit.edu

Abstract

We have developed a foveated gesture recognition system that runs
in an unconstrained office environment with an active camera. Us­
ing vision routines previously implemented for an interactive envi­
ronment, we determine the spatial location of salient body parts
of a user and guide an active camera to obtain images of gestures
or expressions. A hidden-state reinforcement learning paradigm is
used to implement visual attention. The attention module selects
targets to foveate based on the goal of successful recognition, and
uses a new multiple-model Q-Iearning formulation. Given a set
of target and distractor gestures, our system can learn where to
foveate to maximally discriminate a particular gesture.

1 INTRODUCTION

Vision has numerous uses in the natural world. It is used by many organisms in
navigation and object recognition tasks, for finding resources or avoiding predators.
Often overlooked in computational models of vision, however, and particularly rel­
evant for humans, is the use of vision for communication and interaction. In these
domains visual perception is an important communication modality, either in ad­
dition to language or when language cannot be used. In general, people place
considerable weight on visual signals from another individual, such as facial expres­
sion, hand gestures, and body language. We have been developing neurally-inspired
methods which combine low-level vision and learning to model these visual abilities.

Previously, we presented a method for view-based recognition of spatia-temporal
hand gestures [2] and a similar mechanism for the analysis/real-time tracking of
facial expressions [4]. These methods offered real-time performance and a relatively
high level of accuracy, but required foveated images of the object performing the

Active Gesture Recognition Using Learned Visual Attention 859

gesture. There are many domains/tasks for which these are not unreasonable as­
sumptions, such as interaction with a single user workstation or an automobile with
a single driver. However the method had limited usefulness in unconstrained do­
mains, such as "intelligent rooms" or interactive virtual environments, when the
identity and location of the user are unknown.

In this paper, we expand our gesture recognition method to include an active com­
ponent, utilizing a foveated image sensor that can selectively track a person's hand
or face as they walk through a room. The camera tracking and model selection
routines are guided by an action-selection system that implements visual attention
based on reinforcement learning. Using on a simple reward schedule, this attention
system learns the appropriate object (hand, head) to foveate in order to maximize
recognition performance.

2 FOVEATED GESTURE ANALYSIS

Our system for foveated gesture recognition combines person tracking routines,
an active, high-resolution camera, and view-based normalized correlation analysis.
First we will briefly describe the person tracking module and view-based analysis,
then discuss their use with an active camera.

We have implemented vision routines to track a user in in an office setting as part
of our ALIVE system, an Artificial Life Interactive Video Environment[3]. This
system can track people and identify head/hand locations as they walk about a
room, and provides the contextual environment within which view-based gesture
analysis methods can be successfully applied. The ALIVE system assumed little
prior knowledge of the user, and operated on coarse-scale images. 1 ALIVE allows
a user to interact with virtual artificial life creatures, through the use of a "magic­
mirror" metaphor in which user sees him/herself presented in a video display along
with virtual creatures. A wide field-of-view video camera acquires an image of the
user, which is then combined with computer graphics imagery and projected on a
large screen in front of the user. Vision routines in ALIVE compute figure/ground
segmentation and analyze the user's silhouette to determine the location of head,
hands, and other salient body features. We use only a single, calibrated, wide field­
of-view camera to determine the 3-D position of these features. 2 For details of our
person tracking method see [14].

In our approach to real-time expression matching/tracking, a set of view-based
correlation models is used to represent spatio-temporal gesture patterns. We take
a sequence of images representing the gesture to be trained, and build a set of
view models that are sufficient to track the object as it performs the gesture. Our
view models are normalized correlation templates, and can either be intensity-based
or based on band-pass or wavelet-based signal representations.3 We applied our
model to the problem of hand gesture recognition [2] as well as for tracking facial
expressions [4]. For facial tracking, we implemented an interpolation paradigm to
map view-based correlation scores to facial motor controls. We used the Radial Basis
Function (RBF) method[7]; interpolation was performed using a set of exemplars
consisting of pairs of real faces and model faces in different expressions, which were

1 A simple mechanism for recognition of hand gestures was implemented in the original
ALIVE system but made no use of high-resolution view models, and could only recognize
pointing and waving motions defined by the motion of the centroid of the hand.

2By assuming the the user is sitting or standing on the ground plane, we use the imaging
and ground plane geometry to compute the location of the user in 3-D.

3The latter have the advantage of being less dependent on illumination direction.

860

animation / rendering

VIEW-BASED
GESTURE
ANALYSIS

T.DARRELL,A.PENTLAND

~VideoWall

Figure 1: Overview of system for person tracking and active gesture recognition.
Static, wide-field-of-view, camera tracks user's head and hands, which drives gaze
control of active narrow-field-of-view camera. Foveated images are used for view­
based gesture analysis and recognition. Graphical objects are rendered on video
wall and can react to user's position, pose, and gestures.

obtained by generating a 3-D model face and asking the user to match it. With this
simple formalism, we were able to track expressions of a real user and interpolate
equivalent 3-D model faces in real-time.

This view-based analysis requires detailed imagery, which cannot be obtained from
a single, fixed camera as the user walks about a room. To provide high resolution
images for gesture recognition, we augment the wide field-of-view camera in our
interactive environment with an active, narrow-field-of-view camera, as shown in
Figure 1. Information about head/hand location from the existing ALIVE routines
is used to drive the motor control parameters of the narrow field camera. Currently
the camera can be directed to autonomously track head or hands . Using a highly
simplified, two expression model offacial expression (neutral and surprised), we have
been able to track facial expressions as users move about the room and the narrow
angle camera followed the face. For details on this foveated gesture recognition see
[5]

3 VISUAL ATTENTION FOR RECOGNITION

The visual routines in the ALIVE system can be used to track the head and hands
of a user, and the active camera can provide foveated images for gesture recognition.
If we know a priori which body part will produce the gesture of interest, or if we
have a sufficient number of active cameras to track all body parts, then we have
solved the problem. Of course, in practice there are more possible loci of gesture
performance than there are active cameras, and we have to address the problem of
action selection for visual routines, i.e. , attention. In our active gesture recognition
system, we have adopted an action selection model based on reinforcement learning.

Active Gesture Recognition Using Learned Visual Attention 861

3.1 THE ACTIVE GESTURE RECOGNITION PROBLEM

We define an Active Gesture Recognition (AGR) task as follows . First, we assume
primitive routines exist to provide the continuous valued control and tracking of the
different body parts that perform gestures . Second, we assume that body pose and
hand/face state is represented as a feature set, based on the representation produced
by our body tracker and view-based recognition system, and we define a gesture
to be a configuration of the user's body pose and hand/face expression. Third, we
assume that, in addition to there being actions for foveating all the relevant body
parts, there is also a special action labeled accept, and that the execution of this
action by the AG R system signifies detection of the gesture. Finally, the goal of
the AGR task is to execute the accept action whenever the user is in the target
gesture state, and not to perform that action when the user is in any other (e .g.
distract or) state. The AGR system should use the foveation actions to optimally
discriminate the target pattern frqm distractor patterns, even when no single view
of the user is sufficient to decide what gesture the user is performing.

An important problem in applying reinforcement learning to this task is that our
perceptual observations may not provide a complete description of the user's state.
Indeed, because we have a foveated image sensor we know that the user's true
gestural state will be hidden whenever the user is performing a gesture and the
camera is not foveated on the appropriate body part. By definition, a system for
perceptual action selection must not assume a full observation of state is available,
otherwise there would be no meaningful perception taking place.

The AG R task can be considered as a Partially Observable Markov Decision Process
(POMDP), which is essentially a Markov Decision Process without direct access to
state[ll, 9]. Rather than attempt to solve them explicitly, we look to techniques
for hidden state reinforcement learning to find a solution [10, 8, 6, 1]. A POMDP
consists of a set of states in the world S, a set of observations 0, a set of actions
A, a reward function R. After executing an action a, the likelihood of transitioning
between two states s, s' is given by T(s, a, a'), an observation 0 is generated with
probability O(s, a, 0). In practice, T and 0 are not easily obtainable, and we use
reinforcement learning methods which do not require them a priori.

Our state is defined by the users pose, facial expression, and hand configurations, ex­
pressed in nine variables. Three are boolean and are provided directly by the person
tracker: person-present, left-arm-extended, and right-arm-extended. Three
more are provided by the foveated gesture recognition system, (face, left-hand,
right-hand), and take on an integer number of values according to the number
of view-based expressions/hand-poses: in our first experiments face can be one of
neutral, smile, or surprise, and the hands can each be one of neutral, point, or
grab. In addition, three boolean features represent the internal state of the vision
system: head-foveated, left-hand-foveated, right-hand-foveated. At each
time step, the world is defined by a state s E S, which is defined by these features .
An observation, 0 E 0, consists of the same feature variables, except that those
provided by the foveated gesture system (e.g., head and hands) are only observable
when foveated. Thus the face variable is hidden unless the head-foveated variable
is set, the left-hand variable hidden unless the left-hand-foveated variable set,
and similarly with the right hand. Hidden variables are set to a undefined value.

The set of actions, A, available to the AGR system are 4 foveation commands:
look-body, look-head, look-left-hand, and look-right-hand plus the special
accept action. Each foveation command causes the active camera to follow the
respective body part, and sets the internal foveation feature bits accordingly.

862 T. DARRELL, A. PENTLAND

The reward function provides a unit positive reward whenever the accept action
is performed and the user is in the target state (as defined by an oracle, external
to the AGR system), and a fixed negative reward of magnitude a when performed
and the user is in a distractor (non-target) state. Zero reward is given whenever a
foveation action is performed.

3.2 HIDDEN-STATE REINFORCEMENT LEARNING

We have implemented a instance-based method for hidden state reinforcement learn­
ing, based on earlier work by McCallum [10]. The instance-based approach to re­
inforcement learning replaces the absolute state with a distributed memory-based
state representation. Given a history of action, reward, and observation tuples,
(a[t], r[t], o[t]) , 0 :::; t :::; T, a Q-value is also stored with each time step, q[t], and
Q-Iearning[12, 13] is performed by evaluating the similarity of recently observed tu­
ples with sequences farther back in the history chain. Q-values are computed, and
the Q-Iearning update rule applied, maintaining this distributed, memory-based
representation of Q-values.

As in traditional Q-Iearning, at each time step the utility of each action in the
current state is evaluated. If full access to the state was available and a table
used to represent Q values, this would simply be a table look-up operation, but in a
POMDP we do not have full access to state. Using a variation on the instance based
approach employed by McAllum's Nearest Sequence Memory (NSM) algorithm, we
instead find the I< nearest neighbors in the history list relative to the current time
point, and compute their average Q value. For each element on the history list, we
compute the sequence match criteria with the current time point, M(i, T), where

M(i,j) = S(i,j) + M(i -l,j -1) if S(i,j) > 0 and i> 0 and j > 0

o otherwise.

We define Sci, j) to be 1 if o[i] = o[j] or a[i] = a(j], 2 if both are equal, and
o otherwise. Using a superscript in parentheses to denote the action index of a
Q-value, we then compute

T

Q(a)[T] = (1/ I<) L v(a)[i]q[t] , (1)
i=O

where v(a*)[i] indicates whether the history tuple at time step i votes when comput­
ing the Q-value of a new action a"': v(a*)[i] is set to 1 when a[i] = a'" and M(i-I, T)
is among the I< largest match values for all k which have a[k] = a"', otherwise it is
set to O. Given Q values for each action the optimal policy is simply

lI"[T] = arg maxQ(a)[T] .
aEA

(2)

The new action a[T + 1] is chosen either according to this policy or based on an
exploration strategy. In either case, the action is executed yielding an observation
and reward, and a new tuple added to the history. The new Q-value is set to be
the Q value of the chosen action, q[T + 1] = Q(a[T+1]) [T]. The update step of Q
learning is then computed, evaluating

U[T + 1] = maxQ(a)[T + 1] ,
aEA

q[i] +- (1 - fJ)q[i] + fJ(r[i] + ')'U[T + 1]) ,
for each i such that v(a[T+l])[i] = l.

(3)

(4)

