Advances in Neural Information Processing Systems 32 (NIPS 2019) pre-proceedings
The papers below appear in Advances in Neural Information Processing Systems 32 edited by H. Wallach and H. Larochelle and A. Beygelzimer and F. d'Alché-Buc and E. Fox and R. Garnett.They are proceedings from the conference, "Neural Information Processing Systems 2019."
- Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim
- ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee
- Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James L. Sharpnack
- Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, Ian Reid
- Zero-shot Learning via Simultaneous Generating and Learning Hyeonwoo Yu, Beomhee Lee
- Ask not what AI can do, but what AI should do: Towards a framework of task delegability Brian Lubars, Chenhao Tan
- Stand-Alone Self-Attention in Vision Models Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, Jon Shlens
- High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V. Le, Honglak Lee
- Unsupervised learning of object structure and dynamics from videos Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P. Murphy, Honglak Lee
- GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, zhifeng Chen
- Meta-Learning with Implicit Gradients Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, Sergey Levine
- Adversarial Examples Are Not Bugs, They Are Features Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry
- Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, Hamid Rezatofighi, Silvio Savarese
- FreeAnchor: Learning to Match Anchors for Visual Object Detection Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, Qixiang Ye
- Private Hypothesis Selection Mark Bun, Gautam Kamath, Thomas Steinke, Steven Z. Wu
- Differentially Private Algorithms for Learning Mixtures of Separated Gaussians Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan Ullman
- Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation Mark Bun, Thomas Steinke
- Multi-Resolution Weak Supervision for Sequential Data Paroma Varma, Frederic Sala, Shiori Sagawa, Jason Fries, Daniel Fu, Saelig Khattar, Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, Christopher Ré
- DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mummadi, Nhung Ngo, Thi Hoai Phuong Nguyen, Zhongyu Lou, Thomas Brox
- The Point Where Reality Meets Fantasy: Mixed Adversarial Generators for Image Splice Detection Vladimir V. Kniaz, Vladimir Knyaz, Fabio Remondino
- You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, Bin Dong
- Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, Chuang Gan
- Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance Kimia Nadjahi, Alain Durmus, Umut Simsekli, Roland Badeau
- Generalized Sliced Wasserstein Distances Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, Gustavo Rohde
- First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise Thanh Huy Nguyen, Umut Simsekli, Mert Gurbuzbalaban, Gaël RICHARD
- Blind Super-Resolution Kernel Estimation using an Internal-GAN Sefi Bell-Kligler, Assaf Shocher, Michal Irani
- Noise-tolerant fair classification Alex Lamy, Ziyuan Zhong
- Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection Bingzhe Wu, Shiwan Zhao, Chaochao Chen, Haoyang Xu, Li Wang, Xiaolu Zhang, Guangyu Sun, Jun Zhou
- Joint-task Self-supervised Learning for Temporal Correspondence Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, Ming-Hsuan Yang
- Provable Gradient Variance Guarantees for Black-Box Variational Inference Justin Domke
- Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation Justin Domke, Daniel R. Sheldon
- Experience Replay for Continual Learning David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, Gregory Wayne
- Deep ReLU Networks Have Surprisingly Few Activation Patterns Boris Hanin, David Rolnick
- Chasing Ghosts: Instruction Following as Bayesian State Tracking Peter Anderson, Ayush Shrivastava, Devi Parikh, Dhruv Batra, Stefan Lee
- Block Coordinate Regularization by Denoising Yu Sun, Jiaming Liu, Ulugbek Kamilov
- Reducing Noise in GAN Training with Variance Reduced Extragradient Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon Lacoste-Julien
- Learning Erdos-Renyi Random Graphs via Edge Detecting Queries Zihan Li, Matthias Fresacher, Jonathan Scarlett
- A Primal-Dual link between GANs and Autoencoders Hisham Husain, Richard Nock, Robert C. Williamson
- muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking Congchao Wang, Yizhi Wang, Yinxue Wang, Chiung-Ting Wu, Guoqiang Yu
- Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation Qiming ZHANG, Jing Zhang, Wei Liu, Dacheng Tao
- Invert to Learn to Invert Patrick Putzky, Max Welling
- Equitable Stable Matchings in Quadratic Time Nikolaos Tziavelis, Ioannis Giannakopoulos, Katerina Doka, Nectarios Koziris, Panagiotis Karras
- Zero-Shot Semantic Segmentation Maxime Bucher, Tuan-Hung VU, Matthieu Cord, Patrick Pérez
- Metric Learning for Adversarial Robustness Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, Baishakhi Ray
- DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, Ulrich Neumann
- Batched Multi-armed Bandits Problem Zijun Gao, Yanjun Han, Zhimei Ren, Zhengqing Zhou
- vGraph: A Generative Model for Joint Community Detection and Node Representation Learning Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang
- Differentially Private Bayesian Linear Regression Garrett Bernstein, Daniel R. Sheldon
- Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos Yitian Yuan, Lin Ma, Jingwen Wang, Wei Liu, Wenwu Zhu
- AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling Bichuan Guo, Yuxing Han, Jiangtao Wen
- CPM-Nets: Cross Partial Multi-View Networks Changqing Zhang, Zongbo Han, yajie cui, Huazhu Fu, Joey Tianyi Zhou, Qinghua Hu
- Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, hongsheng Li
- Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling Andrey Kolobov, Yuval Peres, Cheng Lu, Eric J. Horvitz
- SySCD: A System-Aware Parallel Coordinate Descent Algorithm Nikolas Ioannou, Celestine Mendler-Dünner, Thomas Parnell
- Importance Weighted Hierarchical Variational Inference Artem Sobolev, Dmitry P. Vetrov
- RSN: Randomized Subspace Newton Robert Gower, Dmitry Koralev, Felix Lieder, Peter Richtarik
- Trust Region-Guided Proximal Policy Optimization Yuhui Wang, Hao He, Xiaoyang Tan, Yaozhong Gan
- Adversarial Self-Defense for Cycle-Consistent GANs Dina Bashkirova, Ben Usman, Kate Saenko
- Towards closing the gap between the theory and practice of SVRG Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis Bach, Robert Gower
- Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control Armin Lederer, Jonas Umlauft, Sandra Hirche
- ETNet: Error Transition Network for Arbitrary Style Transfer Chunjin Song, Zhijie Wu, Yang Zhou, Minglun Gong, Hui Huang
- No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms Max Vladymyrov
- Deep Equilibrium Models Shaojie Bai, J. Zico Kolter, Vladlen Koltun
- Saccader: Improving Accuracy of Hard Attention Models for Vision Gamaleldin Elsayed, Simon Kornblith, Quoc V. Le
- Multiway clustering via tensor block models Miaoyan Wang, Yuchen Zeng
- Regret Minimization for Reinforcement Learning with Vectorial Feedback and Complex Objectives Wang Chi Cheung
- NAT: Neural Architecture Transformer for Accurate and Compact Architectures Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, Junzhou Huang
- Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression Ruidi Chen, Ioannis Paschalidis
- Network Pruning via Transformable Architecture Search Xuanyi Dong, Yi Yang
- Differentiable Cloth Simulation for Inverse Problems Junbang Liang, Ming Lin, Vladlen Koltun
- Poisson-Randomized Gamma Dynamical Systems Aaron Schein, Scott Linderman, Mingyuan Zhou, David Blei, Hanna Wallach
- Volumetric Correspondence Networks for Optical Flow Gengshan Yang, Deva Ramanan
- Learning Conditional Deformable Templates with Convolutional Networks Adrian Dalca, Marianne Rakic, John Guttag, Mert Sabuncu
- Fast Low-rank Metric Learning for Large-scale and High-dimensional Data Han Liu, Zhizhong Han, Yu-Shen Liu, Ming Gu
- Efficient Symmetric Norm Regression via Linear Sketching Zhao Song, Ruosong Wang, Lin Yang, Hongyang Zhang, Peilin Zhong
- RUBi: Reducing Unimodal Biases for Visual Question Answering Remi Cadene, Corentin Dancette, Hedi Ben younes, Matthieu Cord, Devi Parikh
- Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition Jinwoo Choi, Chen Gao, Joseph C. E. Messou, Jia-Bin Huang
- NeurVPS: Neural Vanishing Point Scanning via Conic Convolution Yichao Zhou, Haozhi Qi, Jingwei Huang, Yi Ma
- DATA: Differentiable ArchiTecture Approximation Jianlong Chang, xinbang zhang, Yiwen Guo, GAOFENG MENG, SHIMING XIANG, Chunhong Pan
- Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge Tingting Qiao, Jing Zhang, Duanqing Xu, Dacheng Tao
- Memory-oriented Decoder for Light Field Salient Object Detection Miao Zhang, Jingjing Li, JI WEI, Yongri Piao, Huchuan Lu
- Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition Xuesong Niu, Hu Han, Shiguang Shan, Xilin Chen
- Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels Natalia Neverova, David Novotny, Andrea Vedaldi
- Powerset Convolutional Neural Networks Chris Wendler, Markus Püschel, Dan Alistarh
- Optimal Pricing in Repeated Posted-Price Auctions with Different Patience of the Seller and the Buyer Arsenii Vanunts, Alexey Drutsa
- An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums Hadrien Hendrikx, Francis Bach, Laurent Massoulié
- Point-Voxel CNN for Efficient 3D Deep Learning Zhijian Liu, Haotian Tang, Yujun Lin, Song Han
- Deep Learning without Weight Transport Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, Douglas B. Tweed
- Combinatorial Bandits with Relative Feedback Aadirupa Saha, Aditya Gopalan
- General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme Tao Sun, Yuejiao Sun, Dongsheng Li, Qing Liao
- A Condition Number for Joint Optimization of Cycle-Consistent Networks Leonidas J. Guibas, Qixing Huang, Zhenxiao Liang
- Explicit Disentanglement of Appearance and Perspective in Generative Models Nicki Skafte, Søren Hauberg
- Polynomial Cost of Adaptation for X-Armed Bandits Hedi Hadiji
- Learning to Propagate for Graph Meta-Learning LU LIU, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang
- Secretary Ranking with Minimal Inversions Sepehr Assadi, Eric Balkanski, Renato Leme
- Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes Siqi Liu, Milos Hauskrecht
- Learning Perceptual Inference by Contrasting Chi Zhang, Baoxiong Jia, Feng Gao, Yixin Zhu, HongJing Lu, Song-Chun Zhu
- Selecting the independent coordinates of manifolds with large aspect ratios Yu-Chia Chen, Marina Meila
- Region-specific Diffeomorphic Metric Mapping Zhengyang Shen, Francois-Xavier Vialard, Marc Niethammer
- Deep Supervised Summarization: Algorithm and Application to Learning Instructions Chengguang Xu, Ehsan Elhamifar
- Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations Vincent Sitzmann, Michael Zollhoefer, Gordon Wetzstein
- Reconciling λ-Returns with Experience Replay Brett Daley, Christopher Amato
- Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence Fengxiang He, Tongliang Liu, Dacheng Tao
- Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs Max Simchowitz, Kevin G. Jamieson
- A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, Masanori Koyama
- Combinatorial Inference against Label Noise Paul Hongsuck Seo, Geeho Kim, Bohyung Han
- Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning Chao Qu, Shie Mannor, Huan Xu, Yuan Qi, Le Song, Junwu Xiong
- Convolution with even-sized kernels and symmetric padding Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, Luping Shi
- On The Classification-Distortion-Perception Tradeoff Dong Liu, Haochen Zhang, Zhiwei Xiong
- Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up Dominic Richards, Patrick Rebeschini
- Online sampling from log-concave distributions Holden Lee, Oren Mangoubi, Nisheeth Vishnoi
- Envy-Free Classification Maria-Florina F. Balcan, Travis Dick, Ritesh Noothigattu, Ariel D. Procaccia
- Finding Friend and Foe in Multi-Agent Games Jack Serrino, Max Kleiman-Weiner, David C. Parkes, Josh Tenenbaum
- Image Synthesis with a Single (Robust) Classifier Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry
- Model Compression with Adversarial Robustness: A Unified Optimization Framework Shupeng Gui, Haotao N. Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, Ji Liu
- Cross-channel Communication Networks Jianwei Yang, Zhile Ren, Chuang Gan, Hongyuan Zhu, Devi Parikh
- CondConv: Conditionally Parameterized Convolutions for Efficient Inference Brandon Yang, Gabriel Bender, Quoc V. Le, Jiquan Ngiam
- Regression Planning Networks Danfei Xu, Roberto Martín-Martín, De-An Huang, Yuke Zhu, Silvio Savarese, Li F. Fei-Fei
- Twin Auxilary Classifiers GAN Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, Kayhan Batmanghelich
- Conditional Structure Generation through Graph Variational Generative Adversarial Nets Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, Pan Li
- Distributional Policy Optimization: An Alternative Approach for Continuous Control Chen Tessler, Guy Tennenholtz, Shie Mannor
- Sampling Sketches for Concave Sublinear Functions of Frequencies Edith Cohen, Ofir Geri
- Deliberative Explanations: visualizing network insecurities Pei Wang, Nuno Nvasconcelos
- Computing Full Conformal Prediction Set with Approximate Homotopy Eugene Ndiaye, Ichiro Takeuchi
- Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift Stephan Rabanser, Stephan Günnemann, Zachary Lipton
- Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards Siyuan Li, Rui Wang, Minxue Tang, Chongjie Zhang
- Multi-View Reinforcement Learning Minne Li, Lisheng Wu, Jun WANG, Haitham Bou Ammar
- Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution Thang Vu, Hyunjun Jang, Trung X. Pham, Chang Yoo
- Neural Diffusion Distance for Image Segmentation Jian Sun, Zongben Xu
- Fine-grained Optimization of Deep Neural Networks Mete Ozay
- Extending Stein's unbiased risk estimator to train deep denoisers with correlated pairs of noisy images Magauiya Zhussip, Shakarim Soltanayev, Se Young Chun
- Fixing Implicit Derivatives: Trust-Region Based Learning of Continuous Energy Functions Chris Russell, Matteo Toso, Neill Campbell
- Hyperspherical Prototype Networks Pascal Mettes, Elise van der Pol, Cees Snoek
- Expressive power of tensor-network factorizations for probabilistic modeling Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, Ignacio Cirac
- HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar
- SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points Zhize Li
- Efficient Meta Learning via Minibatch Proximal Update Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng
- Unconstrained Monotonic Neural Networks Antoine Wehenkel, Gilles Louppe
- Guided Similarity Separation for Image Retrieval Chundi Liu, Guangwei Yu, Maksims Volkovs, Cheng Chang, Himanshu Rai, Junwei Ma, Satya Krishna Gorti
- Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma
- Strategizing against No-regret Learners Yuan Deng, Jon Schneider, Balasubramanian Sivan
- D-VAE: A Variational Autoencoder for Directed Acyclic Graphs Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen
- Hierarchical Optimal Transport for Document Representation Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon
- Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes Rui Li
- Positional Normalization Boyi Li, Felix Wu, Kilian Q. Weinberger, Serge Belongie
- A New Defense Against Adversarial Images: Turning a Weakness into a Strength Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, Kilian Q. Weinberger
- Quadratic Video Interpolation Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, Ming-Hsuan Yang
- ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies Bao Wang, Zuoqiang Shi, Stanley Osher
- Incremental Scene Synthesis Benjamin Planche, Xuejian Rong, Ziyan Wu, Srikrishna Karanam, Harald Kosch, YingLi Tian, Jan Ernst, ANDREAS HUTTER
- Self-Supervised Generalisation with Meta Auxiliary Learning Shikun Liu, Andrew Davison, Edward Johns
- Variational Denoising Network: Toward Blind Noise Modeling and Removal Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng, Lei Zhang
- Fast Sparse Group Lasso Yasutoshi Ida, Yasuhiro Fujiwara, Hisashi Kashima
- Learnable Tree Filter for Structure-preserving Feature Transform Lin Song, Yanwei Li, Zeming Li, Gang Yu, Hongbin Sun, Jian Sun, Nanning Zheng
- Data-Dependence of Plateau Phenomenon in Learning with Neural Network --- Statistical Mechanical Analysis Yuki Yoshida, Masato Okada
- Coordinated hippocampal-entorhinal replay as structural inference Talfan Evans, Neil Burgess
- Cascaded Dilated Dense Network with Two-step Data Consistency for MRI Reconstruction Hao Zheng, Faming Fang, Guixu Zhang
- On the Ineffectiveness of Variance Reduced Optimization for Deep Learning Aaron Defazio, Leon Bottou
- On the Curved Geometry of Accelerated Optimization Aaron Defazio
- Multi-marginal Wasserstein GAN Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, Mingkui Tan
- Better Exploration with Optimistic Actor Critic Kamil Ciosek, Quan Vuong, Robert Loftin, Katja Hofmann
- Importance Resampling for Off-policy Prediction Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, Martha White
- The Label Complexity of Active Learning from Observational Data Songbai Yan, Kamalika Chaudhuri, Tara Javidi
- Meta-Learning Representations for Continual Learning Khurram Javed, Martha White
- Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training Haichao Zhang, Jianyu Wang
- Visualizing the PHATE of Neural Networks Scott Gigante, Adam S. Charles, Smita Krishnaswamy, Gal Mishne
- The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers Alex Lu, Amy Lu, Wiebke Schormann, Marzyeh Ghassemi, David Andrews, Alan Moses
- Nonconvex Low-Rank Tensor Completion from Noisy Data Changxiao Cai, Gen Li, H. Vincent Poor, Yuxin Chen
- Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization Gautam Goel, Yiheng Lin, Haoyuan Sun, Adam Wierman
- Channel Gating Neural Networks Weizhe Hua, Yuan Zhou, Christopher M. De Sa, Zhiru Zhang, G. Edward Suh
- Neural networks grown and self-organized by noise Guruprasad Raghavan, Matt Thomson
- Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, Jianmin Wang
- Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng
- Variational Structured Semantic Inference for Diverse Image Captioning Fuhai Chen, Rongrong Ji, Jiayi Ji, Xiaoshuai Sun, Baochang Zhang, Xuri Ge, Yongjian Wu, Feiyue Huang, Yan Wang
- Mapping State Space using Landmarks for Universal Goal Reaching Zhiao Huang, Fangchen Liu, Hao Su
- Transferable Normalization: Towards Improving Transferability of Deep Neural Networks Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, Michael I. Jordan
- Random deep neural networks are biased towards simple functions Giacomo De Palma, Bobak Kiani, Seth Lloyd
- XNAS: Neural Architecture Search with Expert Advice Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, Lihi Zelnik
- CNN^{2}: Viewpoint Generalization via a Binocular Vision Wei-Da Chen, Shan-Hung (Brandon) Wu
- Generalized Off-Policy Actor-Critic Shangtong Zhang, Wendelin Boehmer, Shimon Whiteson
- DAC: The Double Actor-Critic Architecture for Learning Options Shangtong Zhang, Shimon Whiteson
- Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models Tao Yu, Christopher M. De Sa
- Controlling Neural Level Sets Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman
- Blended Matching Pursuit Cyrille Combettes, Sebastian Pokutta
- An Improved Analysis of Training Over-parameterized Deep Neural Networks Difan Zou, Quanquan Gu
- Controllable Text-to-Image Generation Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, Philip Torr
- Improving Textual Network Learning with Variational Homophilic Embeddings Wenlin Wang, Chenyang Tao, Zhe Gan, Guoyin Wang, Liqun Chen, Xinyuan Zhang, Ruiyi Zhang, Qian Yang, Ricardo Henao, Lawrence Carin
- Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach Peilin Zhong, Yuchen Mo, Chang Xiao, Pengyu Chen, Changxi Zheng
- The Randomized Midpoint Method for Log-Concave Sampling Ruoqi Shen, Yin Tat Lee
- Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update Su Young Lee, Choi Sungik, Sae-Young Chung
- Fully Neural Network based Model for General Temporal Point Processes Takahiro Omi, naonori ueda, Kazuyuki Aihara
- Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, Ping Wang
- Discrimination in Online Markets: Effects of Social Bias on Learning from Reviews and Policy Design Faidra Georgia Monachou, Itai Ashlagi
- Provably Powerful Graph Networks Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman
- Order Optimal One-Shot Distributed Learning Arsalan Sharifnassab, Saber Salehkaleybar, S. Jamaloddin Golestani
- Information Competing Process for Learning Diversified Representations Jie Hu, Rongrong Ji, ShengChuan Zhang, Xiaoshuai Sun, Qixiang Ye, Chia-Wen Lin, Qi Tian
- GENO -- GENeric Optimization for Classical Machine Learning Soeren Laue, Matthias Mitterreiter, Joachim Giesen
- Conditional Independence Testing using Generative Adversarial Networks Alexis Bellot, Mihaela van der Schaar
- Online Stochastic Shortest Path with Bandit Feedback and Unknown Transition Function Aviv Rosenberg, Yishay Mansour
- Partitioning Structure Learning for Segmented Linear Regression Trees Xiangyu Zheng, Song Xi Chen
- A Tensorized Transformer for Language Modeling Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, Dawei Song
- Kernel Stein Tests for Multiple Model Comparison Jen Ning Lim, Makoto Yamada, Bernhard Schölkopf, Wittawat Jitkrittum
- Disentangled behavioural representations Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong
- More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation Quanfu Fan, Chun-Fu (Richard) Chen, Hilde Kuehne, Marco Pistoia, David Cox
- Rethinking the CSC Model for Natural Images Dror Simon, Michael Elad
- Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning Weishi Shi, Qi Yu
- Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, Alexei A. Efros
- Perceiving the arrow of time in autoregressive motion Kristof Meding, Dominik Janzing, Bernhard Schölkopf, Felix A. Wichmann
- DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li
- Hyper-Graph-Network Decoders for Block Codes Eliya Nachmani, Lior Wolf
- Large Scale Markov Decision Processes with Changing Rewards Adrian Rivera Cardoso, He Wang, Huan Xu
- Multiview Aggregation for Learning Category-Specific Shape Reconstruction Srinath Sridhar, Davis Rempe, Julien Valentin, Bouaziz Sofien, Leonidas J. Guibas
- Semi-Parametric Dynamic Contextual Pricing Virag Shah, Ramesh Johari, Jose Blanchet
- Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time Alan Kuhnle
- Initialization of ReLUs for Dynamical Isometry Rebekka Burkholz, Alina Dubatovka
- Gradient Information for Representation and Modeling Jie Ding, Robert Calderbank, Vahid Tarokh
- SpiderBoost and Momentum: Faster Variance Reduction Algorithms Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh
- Minimax Optimal Estimation of Approximate Differential Privacy on Neighboring Databases Xiyang Liu, Sewoong Oh
- Backprop with Approximate Activations for Memory-efficient Network Training Ayan Chakrabarti, Benjamin Moseley
- Training Image Estimators without Image Ground Truth Zhihao Xia, Ayan Chakrabarti
- Deep Structured Prediction for Facial Landmark Detection Lisha Chen, Hui Su, Qiang Ji
- Information-Theoretic Confidence Bounds for Reinforcement Learning Xiuyuan Lu, Benjamin Van Roy
- Transfer Anomaly Detection by Inferring Latent Domain Representations Atsutoshi Kumagai, Tomoharu Iwata, Yasuhiro Fujiwara
- Total Least Squares Regression in Input Sparsity Time Huaian Diao, Zhao Song, David Woodruff, Xin Yang
- Park: An Open Platform for Learning-Augmented Computer Systems Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan Marcus, ravichandra addanki, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, Frank Cangialosi, Shaileshh Venkatakrishnan, Wei-Hung Weng, Song Han, Tim Kraska, Dr.Mohammad Alizadeh
- Adapting Neural Networks for the Estimation of Treatment Effects Claudia Shi, David Blei, Victor Veitch
- Learning Transferable Graph Exploration Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, Pushmeet Kohli
- Conformal Prediction Under Covariate Shift Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel Candes, Aaditya Ramdas
- Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep K. Ravikumar
- Asymmetric Valleys: Beyond Sharp and Flat Local Minima Haowei He, Gao Huang, Yang Yuan
- Positive-Unlabeled Compression on the Cloud Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing XU, Dacheng Tao, Chang Xu
- Direct Estimation of Differential Functional Graphical Models Boxin Zhao, Y. Samuel Wang, Mladen Kolar
- On the Calibration of Multiclass Classification with Rejection Chenri Ni, Nontawat Charoenphakdee, Junya Honda, Masashi Sugiyama
- Third-Person Visual Imitation Learning via Decoupled Hierarchical Controller Pratyusha Sharma, Deepak Pathak, Abhinav Gupta
- Stagewise Training Accelerates Convergence of Testing Error Over SGD Zhuoning Yuan, Yan Yan, Rong Jin, Tianbao Yang
- Learning Robust Options by Conditional Value at Risk Optimization Takuya Hiraoka, Takahisa Imagawa, Tatsuya Mori, Takashi Onishi, Yoshimasa Tsuruoka
- Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems Yi Xu, Rong Jin, Tianbao Yang
- On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective Lili Su, Pengkun Yang
- Drill-down: Interactive Retrieval of Complex Scenes using Natural Language Queries Fuwen Tan, Paola Cascante-Bonilla, Xiaoxiao Guo, Hui Wu, Song Feng, Vicente Ordonez
- Dual Variational Generation for Low Shot Heterogeneous Face Recognition Chaoyou Fu, Xiang Wu, Yibo Hu, Huaibo Huang, Ran He
- Discovering Neural Wirings Mitchell Wortsman, Ali Farhadi, Mohammad Rastegari
- On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems Baekjin Kim, Ambuj Tewari
- Knowledge Extraction with No Observable Data Jaemin Yoo, Minyong Cho, Taebum Kim, U Kang
- PAC-Bayes under potentially heavy tails Matthew Holland
- One-Shot Object Detection with Co-Attention and Co-Excitation Ting-I Hsieh, Yi-Chen Lo, Hwann-Tzong Chen, Tyng-Luh Liu
- Quaternion Knowledge Graph Embeddings SHUAI ZHANG, Yi Tay, Lina Yao, Qi Liu
- Glyce: Glyph-vectors for Chinese Character Representations Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, Jiwei Li
- Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
- Heterogeneous Graph Learning for Visual Commonsense Reasoning Weijiang Yu, Jingwen Zhou, Weihao Yu, Xiaodan Liang, Nong Xiao
- Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht
- Classification-by-Components: Probabilistic Modeling of Reasoning over a Set of Components Sascha Saralajew, Lars Holdijk, Maike Rees, Ebubekir Asan, Thomas Villmann
- Identifying Causal Effects via Context-specific Independence Relations Santtu Tikka, Antti Hyttinen, Juha Karvanen
- Bridging Machine Learning and Logical Reasoning by Abductive Learning Wang-Zhou Dai, Qiuling Xu, Yang Yu, Zhi-Hua Zhou
- Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function Zihan Zhang, Xiangyang Ji
- On the Global Convergence of (Fast) Incremental Expectation Maximization Methods Belhal Karimi, Hoi-To Wai, Eric Moulines, Marc Lavielle
- A Linearly Convergent Proximal Gradient Algorithm for Decentralized Optimization Sulaiman Alghunaim, Kun Yuan, Ali H. Sayed
- Regularizing Trajectory Optimization with Denoising Autoencoders Rinu Boney, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala, Antti Rasmus, Harri Valpola
- Learning Hierarchical Priors in VAEs Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, Patrick van der Smagt
- Epsilon-Best-Arm Identification in Pay-Per-Reward Multi-Armed Bandits Sivan Sabato
- Safe Exploration for Interactive Machine Learning Matteo Turchetta, Felix Berkenkamp, Andreas Krause
- Addressing Failure Detection by Learning Model Confidence Charles Corbière, Nicolas THOME, Avner Bar-Hen, Matthieu Cord, Patrick Pérez
- Combinatorial Bayesian Optimization using the Graph Cartesian Product Changyong Oh, Jakub Tomczak, Efstratios Gavves, Max Welling
- Fooling Neural Network Interpretations via Adversarial Model Manipulation Juyeon Heo, Sunghwan Joo, Taesup Moon
- On Lazy Training in Differentiable Programming Lénaïc Chizat, Edouard Oyallon, Francis Bach
- Quality Aware Generative Adversarial Networks KANCHARLA PARIMALA, Sumohana Channappayya
- Copula-like Variational Inference Marcel Hirt, Petros Dellaportas, Alain Durmus
- Implicit Regularization for Optimal Sparse Recovery Tomas Vaskevicius, Varun Kanade, Patrick Rebeschini
- Locally Private Gaussian Estimation Matthew Joseph, Janardhan Kulkarni, Jieming Mao, Steven Z. Wu
- Multi-mapping Image-to-Image Translation via Learning Disentanglement Xiaoming Yu, Yuanqi Chen, Shan Liu, Thomas Li, Ge Li
- Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs Yusuke Tanaka, Toshiyuki Tanaka, Tomoharu Iwata, Takeshi Kurashima, Maya Okawa, Yasunori Akagi, Hiroyuki Toda
- Fast Structured Decoding for Sequence Models Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, Zhihong Deng
- Learning Temporal Pose Estimation from Sparsely-Labeled Videos Gedas Bertasius, Christoph Feichtenhofer, Du Tran, Jianbo Shi, Lorenzo Torresani
- Putting An End to End-to-End: Gradient-Isolated Learning of Representations Sindy Löwe, Peter O'Connor, Bastiaan Veeling
- Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching Hongteng Xu, Dixin Luo, Lawrence Carin
- Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition Satoshi Tsutsui, Yanwei Fu, David Crandall
- Real-Time Reinforcement Learning Simon Ramstedt, Chris Pal
- Robust Multi-agent Counterfactual Prediction Alexander Peysakhovich, Christian Kroer, Adam Lerer
- Approximate Inference Turns Deep Networks into Gaussian Processes Mohammad Emtiyaz E. Khan, Alexander Immer, Ehsan Abedi, Maciej Korzepa
- Deep Signature Transforms Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, Terry Lyons
- Individual Regret in Cooperative Nonstochastic Multi-Armed Bandits Yogev Bar-On, Yishay Mansour
- Convergent Policy Optimization for Safe Reinforcement Learning Ming Yu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang
- Augmented Neural ODEs Emilien Dupont, Arnaud Doucet, Yee Whye Teh
- Thompson Sampling for Multinomial Logit Contextual Bandits Min-hwan Oh, Garud Iyengar
- Backpropagation-Friendly Eigendecomposition Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, Mathieu Salzmann
- FastSpeech: Fast, Robust and Controllable Text to Speech Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, Tie-Yan Liu
- Ultrametric Fitting by Gradient Descent Giovanni Chierchia, Benjamin Perret
- Distinguishing Distributions When Samples Are Strategically Transformed Hanrui Zhang, Yu Cheng, Vincent Conitzer
- Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks Gauthier Gidel, Francis Bach, Simon Lacoste-Julien
- Deep Set Prediction Networks Yan Zhang, Jonathon Hare, Adam Prugel-Bennett
- DppNet: Approximating Determinantal Point Processes with Deep Networks Zelda E. Mariet, Yaniv Ovadia, Jasper Snoek
- Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control Sai Qian Zhang, Qi Zhang, Jieyu Lin
- Neural Lyapunov Control Ya-Chien Chang, Nima Roohi, Sicun Gao
- Fully Dynamic Consistent Facility Location Vincent Cohen-Addad, Niklas Oskar D. Hjuler, Nikos Parotsidis, David Saulpic, Chris Schwiegelshohn
- SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel Bowman
- A Flexible Generative Framework for Graph-based Semi-supervised Learning Jiaqi Ma, Weijing Tang, Ji Zhu, Qiaozhu Mei
- Inherent Weight Normalization in Stochastic Neural Networks Georgios Detorakis, Sourav Dutta, Abhishek Khanna, Matthew Jerry, Suman Datta, Emre Neftci
- Optimal Decision Tree with Noisy Outcomes Su Jia, viswanath nagarajan, Fatemeh Navidi, R Ravi
- Meta-Curvature Eunbyung Park, Junier B. Oliva
- Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning Nathan Kallus, Masatoshi Uehara
- KerGM: Kernelized Graph Matching Zhen Zhang, Yijian Xiang, Lingfei Wu, Bing Xue, Arye Nehorai
- Transfusion: Understanding Transfer Learning for Medical Imaging Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, Samy Bengio
- Adversarial training for free! Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S. Davis, Gavin Taylor, Tom Goldstein
- Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients Jun Sun, Tianyi Chen, Georgios Giannakis, Zaiyue Yang
- Implicitly learning to reason in first-order logic Vaishak Belle, Brendan Juba
- Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods Kevin Liang, Guoyin Wang, Yitong Li, Ricardo Henao, Lawrence Carin
- PC-Fairness: A Unified Framework for Measuring Causality-based Fairness Yongkai Wu, Lu Zhang, Xintao Wu, Hanghang Tong
- Arbicon-Net: Arbitrary Continuous Geometric Transformation Networks for Image Registration Jianchun Chen, Lingjing Wang, Xiang Li, Yi Fang
- Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds Nathan Kallus, Angela Zhou
- The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric Nathan Kallus, Angela Zhou
- HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models Sharon Zhou, Mitchell Gordon, Ranjay Krishna, Austin Narcomey, Li F. Fei-Fei, Michael Bernstein
- First order expansion of convex regularized estimators Pierre Bellec, Arun Kuchibhotla
- Capacity Bounded Differential Privacy Kamalika Chaudhuri, Jacob Imola, Ashwin Machanavajjhala
- Universal Boosting Variational Inference Trevor Campbell, Xinglong Li
- SGD on Neural Networks Learns Functions of Increasing Complexity Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak, Haofeng Zhang
- The Landscape of Non-convex Empirical Risk with Degenerate Population Risk Shuang Li, Gongguo Tang, Michael B. Wakin
- Making AI Forget You: Data Deletion in Machine Learning Antonio Ginart, Melody Guan, Gregory Valiant, James Y. Zou
- Practical Differentially Private Top-k Selection with Pay-what-you-get Composition David Durfee, Ryan M. Rogers
- Conformalized Quantile Regression Yaniv Romano, Evan Patterson, Emmanuel Candes
- Thompson Sampling with Information Relaxation Penalties Seungki Min, Costis Maglaras, Ciamac C. Moallemi
- Deep Generalized Method of Moments for Instrumental Variable Analysis Andrew Bennett, Nathan Kallus, Tobias Schnabel
- Learning Sample-Specific Models with Low-Rank Personalized Regression Ben Lengerich, Bryon Aragam, Eric P. Xing
- Dancing to Music Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang, Jan Kautz
- Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask Hattie Zhou, Janice Lan, Rosanne Liu, Jason Yosinski
- Implicit Generation and Modeling with Energy Based Models Yilun Du, Igor Mordatch
- LCA: Loss Change Allocation for Neural Network Training Janice Lan, Rosanne Liu, Hattie Zhou, Jason Yosinski
- Predicting the Politics of an Image Using Webly Supervised Data Christopher Thomas, Adriana Kovashka
- Adaptive GNN for Image Analysis and Editing Lingyu Liang, LianWen Jin, Yong Xu
- Ultra Fast Medoid Identification via Correlated Sequential Halving Tavor Baharav, David Tse
- Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD PHUONG_HA NGUYEN, Lam Nguyen, Marten van Dijk
- Asymptotics for Sketching in Least Squares Regression Edgar Dobriban, Sifan Liu
- MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, Sergey Levine
- Exact inference in structured prediction Kevin Bello, Jean Honorio
- Coda: An End-to-End Neural Program Decompiler Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, Jishen Zhao
- Bat-G net: Bat-inspired High-Resolution 3D Image Reconstruction using Ultrasonic Echoes Gunpil Hwang, Seohyeon Kim, Hyeon-Min Bae
- Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, Simon Lacoste-Julien
- Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data Dominik Linzner, Michael Schmidt, Heinz Koeppl
- Privacy-Preserving Classification of Personal Text Messages with Secure Multi-Party Computation Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, anderson nascimento
- Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy Jonathan Ullman, Adam Sealfon
- Learning Representations for Time Series Clustering Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell
- Verified Uncertainty Calibration Ananya Kumar, Percy S. Liang, Tengyu Ma
- A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits Wenhao Zhang, Si Wu, Brent Doiron, Tai Sing Lee
- Unsupervised Keypoint Learning for Guiding Class-Conditional Video Prediction Yunji Kim, Seonghyeon Nam, In Cho, Seon Joo Kim
- Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks Yiwen Guo, Ziang Yan, Changshui Zhang
- Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction Difan Zou, Pan Xu, Quanquan Gu
- Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling Qitian Wu, Zixuan Zhang, Xiaofeng Gao, Junchi Yan, Guihai Chen
- Cross-sectional Learning of Extremal Dependence among Financial Assets Xing Yan, Qi Wu, Wen Zhang
- Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG Yujia Jin, Aaron Sidford
- Compression with Flows via Local Bits-Back Coding Jonathan Ho, Evan Lohn, Pieter Abbeel
- Exact Rate-Distortion in Autoencoders via Echo Noise Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg
- iSplit LBI: Individualized Partial Ranking with Ties via Split LBI Qianqian Xu, Xinwei Sun, Zhiyong Yang, Xiaochun Cao, Qingming Huang, Yuan Yao
- Domes to Drones: Self-Supervised Active Triangulation for 3D Human Pose Reconstruction Aleksis Pirinen, Erik Gärtner, Cristian Sminchisescu
- MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization Shangyu Chen, Wenya Wang, Sinno Jialin Pan
- Improved Precision and Recall Metric for Assessing Generative Models Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, Timo Aila
- A First-Order Algorithmic Framework for Distributionally Robust Logistic Regression JIAJIN LI, SEN HUANG, Anthony Man-Cho So
- PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph Yikang LI, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, Xiaogang Wang
- Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso Quentin Bertrand, Mathurin Massias, Alexandre Gramfort, Joseph Salmon
- Joint Optimization of Tree-based Index and Deep Model for Recommender Systems Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, Kun Gai
- Learning Generalizable Device Placement Algorithms for Distributed Machine Learning ravichandra addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh
- Uncoupled Regression from Pairwise Comparison Data Liyuan Xu, Junya Honda, Gang Niu, Masashi Sugiyama
- Cross Attention Network for Few-shot Classification Ruibing Hou, Hong Chang, Bingpeng MA, Shiguang Shan, Xilin Chen
- A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution Qing Qu, Xiao Li, Zhihui Zhu
- SCAN: A Scalable Neural Networks Framework Towards Compact and Efficient Models Linfeng Zhang, Zhanhong Tan, Jiebo Song, Jingwei Chen, Chenglong Bao, Kaisheng Ma
- Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay
- Teaching Multiple Concepts to a Forgetful Learner Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
- Regularized Weighted Low Rank Approximation Frank Ban, David Woodruff, Richard Zhang
- Practical and Consistent Estimation of f-Divergences Paul Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme, Ilya O. Tolstikhin
- Approximation Ratios of Graph Neural Networks for Combinatorial Problems Ryoma Sato, Makoto Yamada, Hisashi Kashima
- Thinning for Accelerating the Learning of Point Processes Tianbo Li, Yiping Ke
- A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models Maxim Kuznetsov, Daniil Polykovskiy, Dmitry P. Vetrov, Alex Zhebrak
- Differentially Private Markov Chain Monte Carlo Mikko Heikkilä, Joonas Jälkö, Onur Dikmen, Antti Honkela
- Full-Gradient Representation for Neural Network Visualization Suraj Srinivas, François Fleuret
- q-means: A quantum algorithm for unsupervised machine learning Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, Anupam Prakash
- Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, Adish Singla
- Limitations of the empirical Fisher approximation for natural gradient descent Frederik Kunstner, Philipp Hennig, Lukas Balles
- Flow-based Image-to-Image Translation with Feature Disentanglement Ruho Kondo, Keisuke Kawano, Satoshi Koide, Takuro Kutsuna
- Learning dynamic polynomial proofs Alhussein Fawzi, Mateusz Malinowski, Hamza Fawzi, Omar Fawzi
- Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models Vincent LE GUEN, Nicolas THOME
- Understanding Attention and Generalization in Graph Neural Networks Boris Knyazev, Graham W. Taylor, Mohamed Amer
- Data Cleansing for Models Trained with SGD Satoshi Hara, Atsushi Nitanda, Takanori Maehara
- Curvilinear Distance Metric Learning Shuo Chen, Lei Luo, Jian Yang, Chen Gong, Jun Li, Heng Huang
- Embedding Symbolic Knowledge into Deep Networks Xie Yaqi, Ziwei Xu, Kuldeep S Meel, Mohan Kankanhalli, Harold Soh
- Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections Raanan Yehezkel Rohekar, Yaniv Gurwicz, Shami Nisimov, Gal Novik
- Efficient Graph Generation with Graph Recurrent Attention Networks Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K. Duvenaud, Raquel Urtasun, Richard Zemel
- Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms Mahesh Chandra Mukkamala, Peter Ochs
- Learning Deep Bilinear Transformation for Fine-grained Image Representation Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, Jiebo Luo
- Practical Deep Learning with Bayesian Principles Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E. Khan, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota
- Training Language GANs from Scratch Cyprien de Masson d'Autume, Shakir Mohamed, Mihaela Rosca, Jack Rae
- Pseudo-Extended Markov chain Monte Carlo Christopher Nemeth, Fredrik Lindsten, Maurizio Filippone, James Hensman
- Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate James Jordon, Jinsung Yoon, Mihaela van der Schaar
- Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters Alberto Maria Metelli, Amarildo Likmeta, Marcello Restelli
- On Adversarial Mixup Resynthesis Christopher Beckham, Sina Honari, Alex M. Lamb, Vikas Verma, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio, Chris Pal
- A Geometric Perspective on Optimal Representations for Reinforcement Learning Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle
- Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks Joshua Lee, Prasanna Sattigeri, Gregory Wornell
- Understanding and Improving Layer Normalization Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, Junyang Lin
- Uncertainty-based Continual Learning with Adaptive Regularization Hongjoon Ahn, Sungmin Cha, Donggyu Lee, Taesup Moon
- LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, Dacheng Tao
- U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging Mathias Perslev, Michael Jensen, Sune Darkner, Poul Jørgen Jennum, Christian Igel
- Massively scalable Sinkhorn distances via the Nyström method Jason Altschuler, Francis Bach, Alessandro Rudi, Jonathan Niles-Weed
- Double Quantization for Communication-Efficient Distributed Optimization Yue Yu, Jiaxiang Wu, Longbo Huang
- Globally optimal score-based learning of directed acyclic graphs in high-dimensions Bryon Aragam, Arash Amini, Qing Zhou
- Multi-relational Poincaré Graph Embeddings Ivana Balazevic, Carl Allen, Timothy Hospedales
- No-Press Diplomacy: Modeling Multi-Agent Gameplay Philip Paquette, Yuchen Lu, SETON STEVEN BOCCO, Max Smith, Satya O.-G., Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, Aaron C. Courville
- State Aggregation Learning from Markov Transition Data Yaqi Duan, Tracy Ke, Mengdi Wang
- Disentangling Influence: Using disentangled representations to audit model predictions Charles Marx, Richard Phillips, Sorelle Friedler, Carlos Scheidegger, Suresh Venkatasubramanian
- Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato, Sebastian Tschiatschek
- Partially Encrypted Deep Learning using Functional Encryption Théo Ryffel, David Pointcheval, Francis Bach, Edouard Dufour-Sans, Romain Gay
- Decentralized Cooperative Stochastic Bandits David Martínez-Rubio, Varun Kanade, Patrick Rebeschini
- Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem Gonzalo Mena, Jonathan Niles-Weed
- Efficient Deep Approximation of GMMs Shirin Jalali, Carl Nuzman, Iraj Saniee
- Learning low-dimensional state embeddings and metastable clusters from time series data Yifan Sun, Yaqi Duan, Hao Gong, Mengdi Wang
- Exploiting Local and Global Structure for Point Cloud Semantic Segmentation with Contextual Point Representations Xu Wang, Jingming He, Lin Ma
- Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes Creighton Heaukulani, Mark van der Wilk
- Kernel Instrumental Variable Regression Rahul Singh, Maneesh Sahani, Arthur Gretton
- Symmetry-Based Disentangled Representation Learning requires Interaction with Environments Hugo Caselles-Dupré, Michael Garcia Ortiz, David Filliat
- Fast Efficient Hyperparameter Tuning for Policy Gradient Methods Supratik Paul, Vitaly Kurin, Shimon Whiteson
- Offline Contextual Bayesian Optimization Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Oak Nelson, Mark Boyer, Egemen Kolemen
- Making the Cut: A Bandit-based Approach to Tiered Interviewing Candice Schumann, Zhi Lang, Jeffrey Foster, John Dickerson
- Unsupervised Scalable Representation Learning for Multivariate Time Series Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi
- A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI Tao Tu, John Paisley, Stefan Haufe, Paul Sajda
- End to end learning and optimization on graphs Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe
- Game Design for Eliciting Distinguishable Behavior Fan Yang, Liu Leqi, Yifan Wu, Zachary Lipton, Pradeep K. Ravikumar, Tom M. Mitchell, William W. Cohen
- When does label smoothing help? Rafael Müller, Simon Kornblith, Geoffrey E. Hinton
- Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning Harsh Gupta, R. Srikant, Lei Ying
- Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks Lixin Fan, Kam Woh Ng, Chee Seng Chan
- Scalable Spike Source Localization in Extracellular Recordings using Amortized Variational Inference Cole Hurwitz, Kai Xu, Akash Srivastava, Alessio Buccino, Matthias Hennig
- Optimal Sketching for Kronecker Product Regression and Low Rank Approximation Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, David Woodruff
- Distribution-Independent PAC Learning of Halfspaces with Massart Noise Ilias Diakonikolas, Themis Gouleakis, Christos Tzamos
- The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies Basri Ronen, David Jacobs, Yoni Kasten, Shira Kritchman
- Adaptive Auxiliary Task Weighting for Reinforcement Learning Xingyu Lin, Harjatin Baweja, George Kantor, David Held
- Blocking Bandits Soumya Basu, Rajat Sen, Sujay Sanghavi, Sanjay Shakkottai
- Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities Wei Qian, Yuqian Zhang, Yudong Chen
- Prior-Free Dynamic Auctions with Low Regret Buyers Yuan Deng, Jon Schneider, Balasubramanian Sivan
- On Single Source Robustness in Deep Fusion Models Taewan Kim, Joydeep Ghosh
- Policy Evaluation with Latent Confounders via Optimal Balance Andrew Bennett, Nathan Kallus
- Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting Rajat Sen, Hsiang-Fu Yu, Inderjit S. Dhillon
- Adaptive Cross-Modal Few-shot Learning Chen Xing, Negar Rostamzadeh, Boris Oreshkin, Pedro O. O. Pinheiro
- Spectral Modification of Graphs for Improved Spectral Clustering Ioannis Koutis, Huong Le
- Hyperbolic Graph Convolutional Neural Networks Ines Chami, Zhitao Ying, Christopher Ré, Jure Leskovec
- Cost Effective Active Search Shali Jiang, Roman Garnett, Benjamin Moseley
- Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs Jian QIAN, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric
- Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, Kailash Gopalakrishnan
- Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi Jaakkola
- Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees Ruqi Zhang, Christopher M. De Sa
- One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers Ari Morcos, Haonan Yu, Michela Paganini, Yuandong Tian
- Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces Chuan Guo, Ali Mousavi, Xiang Wu, Daniel N. Holtmann-Rice, Satyen Kale, Sashank Reddi, Sanjiv Kumar
- Fair Algorithms for Clustering Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, Maryam Negahbani
- Learning Mean-Field Games Xin Guo, Anran Hu, Renyuan Xu, Junzi Zhang
- SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers Igor Fedorov, Ryan P. Adams, Matthew Mattina, Paul Whatmough
- Deep imitation learning for molecular inverse problems Eric Jonas
- Visual Concept-Metaconcept Learning Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, Jiajun Wu
- Few-shot Video-to-Video Synthesis Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin Liu, Bryan Catanzaro, Jan Kautz
- Neural Similarity Learning Weiyang Liu, Zhen Liu, James M. Rehg, Le Song
- Ordered Memory Yikang Shen, Shawn Tan, Arian Hosseini, Zhouhan Lin, Alessandro Sordoni, Aaron C. Courville
- MixMatch: A Holistic Approach to Semi-Supervised Learning David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, Colin A. Raffel
- Multivariate Triangular Quantile Maps for Novelty Detection Jingjing Wang, Sun Sun, Yaoliang Yu
- Fast Parallel Algorithms for Statistical Subset Selection Problems Sharon Qian, Yaron Singer
- PHYRE: A New Benchmark for Physical Reasoning Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, Ross Girshick
- On the number of variables to use in principal component regression Ji Xu, Daniel J. Hsu
- Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery Jicong Fan, Lijun Ding, Yudong Chen, Madeleine Udell
- Mutually Regressive Point Processes Ifigeneia Apostolopoulou, Scott Linderman, Kyle Miller, Artur Dubrawski
- Data-driven Estimation of Sinusoid Frequencies Gautier Izacard, Sreyas Mohan, Carlos Fernandez-Granda
- E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, Zhangyang Wang
- ANODEV2: A Coupled Neural ODE Framework Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E. Gonzalez, Kurt Keutzer, Michael W. Mahoney, George Biros
- Estimating Entropy of Distributions in Constant Space Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, Ziteng Sun
- On the Utility of Learning about Humans for Human-AI Coordination Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, Anca Dragan
- Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm
- Learning in Generalized Linear Contextual Bandits with Stochastic Delays Zhengyuan Zhou, Renyuan Xu, Jose Blanchet
- Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, David Evans
- Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions Gabriele Farina, Christian Kroer, Tuomas Sandholm
- Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu
- Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, Xifeng Yan
- On the Accuracy of Influence Functions for Measuring Group Effects Pang Wei W. Koh, Kai-Siang Ang, Hubert Teo, Percy S. Liang
- Face Reconstruction from Voice using Generative Adversarial Networks Yandong Wen, Bhiksha Raj, Rita Singh
- Incremental Few-Shot Learning with Attention Attractor Networks Mengye Ren, Renjie Liao, Ethan Fetaya, Richard Zemel
- On Testing for Biases in Peer Review Ivan Stelmakh, Nihar Shah, Aarti Singh
- Learning Disentangled Representation for Robust Person Re-identification Chanho Eom, Bumsub Ham
- Balancing Efficiency and Fairness in On-Demand Ridesourcing Nixie S. Lesmana, Xuan Zhang, Xiaohui Bei
- Latent Ordinary Differential Equations for Irregularly-Sampled Time Series Yulia Rubanova, Tian Qi Chen, David K. Duvenaud
- Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion Yiqi Zhong, Cho-Ying Wu, Suya You, Ulrich Neumann
- Input Similarity from the Neural Network Perspective Guillaume Charpiat, Nicolas Girard, Loris Felardos, Yuliya Tarabalka
- Adaptive Sequence Submodularity Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi
- Weight Agnostic Neural Networks Adam Gaier, David Ha
- Learning to Predict Without Looking Ahead: World Models Without Forward Prediction Daniel Freeman, David Ha, Luke Metz
- Reducing the variance in online optimization by transporting past gradients Sébastien Arnold, Pierre-Antoine Manzagol, Reza Babanezhad Harikandeh, Ioannis Mitliagkas, Nicolas Le Roux
- Characterizing Bias in Classifiers using Generative Models Daniel McDuff, Shuang Ma, Yale Song, Ashish Kapoor
- Optimal Stochastic and Online Learning with Individual Iterates Yunwen Lei, Peng Yang, Ke Tang, Ding-Xuan Zhou
- Policy Learning for Fairness in Ranking Ashudeep Singh, Thorsten Joachims
- Off-Policy Evaluation via Off-Policy Classification Alexander Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, Sergey Levine
- Regularized Gradient Boosting Corinna Cortes, Mehryar Mohri, Dmitry Storcheus
- Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip Torr, Victor Lee, Kyle Cranmer, Mr. Prabhat, Frank Wood
- Markov Random Fields for Collaborative Filtering Harald Steck
- A Step Toward Quantifying Independently Reproducible Machine Learning Research Edward Raff
- Scalable Global Optimization via Local Bayesian Optimization David Eriksson, Michael Pearce, Jacob Gardner, Ryan D. Turner, Matthias Poloczek
- Time-series Generative Adversarial Networks Jinsung Yoon, Daniel Jarrett, Mihaela van der Schaar
- Ouroboros: On Accelerating Training of Transformer-Based Language Models Qian Yang, Zhouyuan Huo, Wenlin Wang, Lawrence Carin
- A Refined Margin Distribution Analysis for Forest Representation Learning Shen-Huan Lyu, Liang Yang, Zhi-Hua Zhou
- Robustness to Adversarial Perturbations in Learning from Incomplete Data Amir Najafi, Shin-ichi Maeda, Masanori Koyama, Takeru Miyato
- Exploring Unexplored Tensor Network Decompositions for Convolutional Neural Networks Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, Shin-ichi Maeda
- An Adaptive Empirical Bayesian Method for Sparse Deep Learning Wei Deng, Xiao Zhang, Faming Liang, Guang Lin
- Adaptive Influence Maximization with Myopic Feedback Binghui Peng, Wei Chen
- Focused Quantization for Sparse CNNs Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, Cheng-Zhong Xu
- Quantum Embedding of Knowledge for Reasoning Dinesh Garg, Shajith Ikbal, Santosh K. Srivastava, Harit Vishwakarma, Hima Karanam, L Venkata Subramaniam
- Optimal Best Markovian Arm Identification with Fixed Confidence Vrettos Moulos
- Limiting Extrapolation in Linear Approximate Value Iteration Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill
- Almost Horizon-Free Structure-Aware Best Policy Identification with a Generative Model Andrea Zanette, Mykel J. Kochenderfer, Emma Brunskill
- Invertible Convolutional Flow Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, Daniel Duckworth
- A Latent Variational Framework for Stochastic Optimization Philippe Casgrain
- Topology-Preserving Deep Image Segmentation Xiaoling Hu, Fuxin Li, Dimitris Samaras, Chao Chen
- Connective Cognition Network for Directional Visual Commonsense Reasoning Aming Wu, Linchao Zhu, Yahong Han, Yi Yang
- Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms Vikas Garg, Tamar Pichkhadze
- A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning Francisco Garcia, Philip S. Thomas
- Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently Xiao Liu, Xiaolong Zou, Zilong Ji, Gengshuo Tian, Yuanyuan Mi, Tiejun Huang, K. Y. Michael Wong, Si Wu
- Learning Disentangled Representations for Recommendation Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, Wenwu Zhu
- Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels Simon S. Du, Kangcheng Hou, Russ R. Salakhutdinov, Barnabas Poczos, Ruosong Wang, Keyulu Xu
- In-Place Zero-Space Memory Protection for CNN Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou, Seung-Hwan Lim
- Acceleration via Symplectic Discretization of High-Resolution Differential Equations Bin Shi, Simon S. Du, Weijie Su, Michael I. Jordan
- XLNet: Generalized Autoregressive Pretraining for Language Understanding Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R. Salakhutdinov, Quoc V. Le
- Comparison Against Task Driven Artificial Neural Networks Reveals Functional Properties in Mouse Visual Cortex Jianghong Shi, Eric Shea-Brown, Michael Buice
- Variance Reduced Policy Evaluation with Smooth Function Approximation Hoi-To Wai, Mingyi Hong, Zhuoran Yang, Zhaoran Wang, Kexin Tang
- Learning GANs and Ensembles Using Discrepancy Ben Adlam, Corinna Cortes, Mehryar Mohri, Ningshan Zhang
- Co-Generation with GANs using AIS based HMC Tiantian Fang, Alexander Schwing
- AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, Shanfeng Zhu
- Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs Himanshu Sahni, Toby Buckley, Pieter Abbeel, Ilya Kuzovkin
- Abstract Reasoning with Distracting Features Kecheng Zheng, Zheng-Jun Zha, Wei Wei
- Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer Zhiyong Yang, Qianqian Xu, Yangbangyan Jiang, Xiaochun Cao, Qingming Huang
- Adversarial Training and Robustness for Multiple Perturbations Florian Tramer, Dan Boneh
- Doubly-Robust Lasso Bandit Gi-Soo Kim, Myunghee Cho Paik
- DM2C: Deep Mixed-Modal Clustering Yangbangyan Jiang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, Qingming Huang
- MaCow: Masked Convolutional Generative Flow Xuezhe Ma, Xiang Kong, Shanghang Zhang, Eduard Hovy
- Learning by Abstraction: The Neural State Machine Drew Hudson, Christopher D. Manning
- Adaptive Gradient-Based Meta-Learning Methods Mikhail Khodak, Maria-Florina F. Balcan, Ameet S. Talwalkar
- Equipping Experts/Bandits with Long-term Memory Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang
- A Regularized Approach to Sparse Optimal Policy in Reinforcement Learning Wenhao Yang, Xiang Li, Zhihua Zhang
- Scalable inference of topic evolution via models for latent geometric structures Mikhail Yurochkin, Zhiwei Fan, Aritra Guha, Paraschos Koutris, XuanLong Nguyen
- Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, Marius Kloft
- Deep Active Learning with a Neural Architecture Search Yonatan Geifman, Ran El-Yaniv
- Efficiently escaping saddle points on manifolds Christopher Criscitiello, Nicolas Boumal
- AutoAssist: A Framework to Accelerate Training of Deep Neural Networks Jiong Zhang, Hsiang-Fu Yu, Inderjit S. Dhillon
- DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters W. O. K. Asiri Suranga Wijesinghe, Qing Wang
- Learning Dynamics of Attention: Human Prior for Interpretable Machine Reasoning Wonjae Kim, Yoonho Lee
- Comparing Unsupervised Word Translation Methods Step by Step Mareike Hartmann, Yova Kementchedjhieva, Anders Søgaard
- Learning from Bad Data via Generation Tianyu Guo, Chang Xu, Boxin Shi, Chao Xu, Dacheng Tao
- Constrained deep neural network architecture search for IoT devices accounting for hardware calibration Florian Scheidegger, Luca Benini, Costas Bekas, A. Cristiano I. Malossi
- Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection Yihe Dong, Samuel Hopkins, Jerry Li
- Iterative Least Trimmed Squares for Mixed Linear Regression Yanyao Shen, Sujay Sanghavi
- Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces Yu Qi, Bin Liu, Yueming Wang, Gang Pan
- Divergence-Augmented Policy Optimization Qing Wang, Yingru Li, Jiechao Xiong, Tong Zhang
- Intrinsic dimension of data representations in deep neural networks Alessio Ansuini, Alessandro Laio, Jakob H. Macke, Davide Zoccolan
- Towards a Zero-One Law for Column Subset Selection Zhao Song, David Woodruff, Peilin Zhong
- Compositional De-Attention Networks Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang, Siu Cheung Hui
- Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning Jian Ni, Shanghang Zhang, Haiyong Xie
- Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers Zeyuan Allen-Zhu, Yuanzhi Li, Yingyu Liang
- Mining GOLD Samples for Conditional GANs Sangwoo Mo, Chiheon Kim, Sungwoong Kim, Minsu Cho, Jinwoo Shin
- Deep Model Transferability from Attribution Maps Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, Mingli Song
- Fully Parameterized Quantile Function for Distributional Reinforcement Learning Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, Tie-Yan Liu
- Direct Optimization through \arg \max for Discrete Variational Auto-Encoder Guy Lorberbom, Tommi Jaakkola, Andreea Gane, Tamir Hazan
- Distributional Reward Decomposition for Reinforcement Learning Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Tie-Yan Liu, Guangwen Yang
- L_DMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise Yilun Xu, Peng Cao, Yuqing Kong, Yizhou Wang
- Convergence Guarantees for Adaptive Bayesian Quadrature Methods Motonobu Kanagawa, Philipp Hennig
- Progressive Augmentation of GANs Dan Zhang, Anna Khoreva
- UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization Ali Kavis, Kfir Y. Levy, Francis Bach, Volkan Cevher
- Meta-Surrogate Benchmarking for Hyperparameter Optimization Aaron Klein, Zhenwen Dai, Frank Hutter, Neil Lawrence, Javier Gonzalez
- Learning to Perform Local Rewriting for Combinatorial Optimization Xinyun Chen, Yuandong Tian
- Anti-efficient encoding in emergent communication Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, Marco Baroni
- Singleshot : a scalable Tucker tensor decomposition Abraham Traore, Maxime Berar, Alain Rakotomamonjy
- Neural Machine Translation with Soft Prototype Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Cheng Xiang Zhai, Tie-Yan Liu
- Reliable training and estimation of variance networks Nicki Skafte, Martin Jørgensen, Søren Hauberg
- Copula Multi-label Learning Weiwei Liu
- Bayesian Learning of Sum-Product Networks Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, Zoubin Ghahramani
- Bayesian Batch Active Learning as Sparse Subset Approximation Robert Pinsler, Jonathan Gordon, Eric Nalisnick, José Miguel Hernández-Lobato
- Optimal Sparsity-Sensitive Bounds for Distributed Mean Estimation zengfeng Huang, Ziyue Huang, Yilei WANG, Ke Yi
- Global Sparse Momentum SGD for Pruning Very Deep Neural Networks Xiaohan Ding, guiguang ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu
- Variational Bayesian Decision-making for Continuous Utilities Tomasz Kuśmierczyk, Joseph Sakaya, Arto Klami
- The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks Ryo Karakida, Shotaro Akaho, Shun-ichi Amari
- Single-Model Uncertainties for Deep Learning Natasa Tagasovska, David Lopez-Paz
- Is Deeper Better only when Shallow is Good? Eran Malach, Shai Shalev-Shwartz
- Wasserstein Weisfeiler-Lehman Graph Kernels Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, Karsten Borgwardt
- Domain Generalization via Model-Agnostic Learning of Semantic Features Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, Ben Glocker
- Grid Saliency for Context Explanations of Semantic Segmentation Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, Volker Fischer
- First-order methods almost always avoid saddle points: The case of vanishing step-sizes Ioannis Panageas, Georgios Piliouras, Xiao Wang
- Maximum Mean Discrepancy Gradient Flow Michael Arbel, Anna Korba, Adil SALIM, Arthur Gretton
- Oblivious Sampling Algorithms for Private Data Analysis Sajin Sasy, Olga Ohrimenko
- Semi-supervisedly Co-embedding Attributed Networks Zaiqiao Meng, Shangsong Liang, Jinyuan Fang, Teng Xiao
- From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI Roman Beliy, Guy Gaziv, Assaf Hoogi, Francesca Strappini, Tal Golan, Michal Irani
- Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders Natasa Tagasovska, Damien Ackerer, Thibault Vatter
- Nonstochastic Multiarmed Bandits with Unrestricted Delays Tobias Sommer Thune, Nicolò Cesa-Bianchi, Yevgeny Seldin
- BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther
- Code Generation as a Dual Task of Code Summarization Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, Zhi Jin
- Diffeomorphic Temporal Alignment Nets Ron A. Shapira Weber, Matan Eyal, Nicki Skafte, Oren Shriki, Oren Freifeld
- Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior Cheng-Chun Hsu, Kuang-Jui Hsu, Chung-Chi Tsai, Yen-Yu Lin, Yung-Yu Chuang
- On the Power and Limitations of Random Features for Understanding Neural Networks Gilad Yehudai, Ohad Shamir
- Efficient Pure Exploration in Adaptive Round model tianyuan jin, Jieming SHI, Xiaokui Xiao, Enhong Chen
- Multi-objects Generation with Amortized Structural Regularization Taufik Xu, Chongxuan LI, Jun Zhu, Bo Zhang
- Neural Shuffle-Exchange Networks - Sequence Processing in O(n log n) Time Karlis Freivalds, Emīls Ozoliņš, Agris Šostaks
- DetNAS: Backbone Search for Object Detection Yukang Chen, Tong Yang, Xiangyu Zhang, GAOFENG MENG, Xinyu Xiao, Jian Sun
- Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates Adil SALIM, Dmitry Koralev, Peter Richtarik
- Fast AutoAugment Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, Sungwoong Kim
- On the Convergence Rate of Training Recurrent Neural Networks Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song
- Interval timing in deep reinforcement learning agents Ben Deverett, Ryan Faulkner, Meire Fortunato, Gregory Wayne, Joel Z. Leibo
- Graph-based Discriminators: Sample Complexity and Expressiveness Roi Livni, Yishay Mansour
- Large Scale Structure of Neural Network Loss Landscapes Stanislav Fort, Stanislaw Jastrzebski
- Learning Nonsymmetric Determinantal Point Processes Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, Syrine Krichene
- Hypothesis Set Stability and Generalization Dylan J. Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan
- Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni
- Precision-Recall Balanced Topic Modelling Seppo Virtanen, Mark Girolami
- Learning Sparse Distributions using Iterative Hard Thresholding Jacky Y. Zhang, Rajiv Khanna, Anastasios Kyrillidis, Oluwasanmi O. Koyejo
- Discriminative Topic Modeling with Logistic LDA Iryna Korshunova, Hanchen Xiong, Mateusz Fedoryszak, Lucas Theis
- Quantum Wasserstein Generative Adversarial Networks Shouvanik Chakrabarti, Huang Yiming, Tongyang Li, Soheil Feizi, Xiaodi Wu
- Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion Joan Serrà, Santiago Pascual, Carlos Segura Perales
- Hyperparameter Learning via Distributional Transfer Ho Chung Law, Peilin Zhao, Leung Sing Chan, Junzhou Huang, Dino Sejdinovic
- Discriminator optimal transport Akinori Tanaka
- High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, Jan Gasthaus
- Are Anchor Points Really Indispensable in Label-Noise Learning? Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, Masashi Sugiyama
- Aligning Visual Regions and Textual Concepts for Semantic-Grounded Image Representations Fenglin Liu, Yuanxin Liu, Xuancheng Ren, Xiaodong He, Xu Sun
- Differentiable Ranking and Sorting using Optimal Transport Marco Cuturi, Olivier Teboul, Jean-Philippe Vert
- Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks Gaël Letarte, Pascal Germain, Benjamin Guedj, Francois Laviolette
- Likelihood-Free Overcomplete ICA and Applications In Causal Discovery Chenwei DING, Mingming Gong, Kun Zhang, Dacheng Tao
- Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem DongDong Ge, Haoyue Wang, Zikai Xiong, Yinyu Ye
- Beyond Vector Spaces: Compact Data Representation as Differentiable Weighted Graphs Denis Mazur, Vage Egiazarian, Stanislav Morozov, Artem Babenko
- Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections Boris Muzellec, Marco Cuturi
- Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent Huizhuo Yuan, Xiangru Lian, Chris Junchi Li, Ji Liu, Wenqing Hu
- On the convergence of single-call stochastic extra-gradient methods Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos
- Infra-slow brain dynamics as a marker for cognitive function and decline Shagun Ajmera Shyam Sunder Ajmera, Shreya Rajagopal, Razi Rehman, Devarajan Sridharan
- Robust Principal Component Analysis with Adaptive Neighbors Rui Zhang, Hanghang Tong
- High-Quality Self-Supervised Deep Image Denoising Samuli Laine, Tero Karras, Jaakko Lehtinen, Timo Aila
- Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup Sebastian Goldt, Madhu Advani, Andrew M. Saxe, Florent Krzakala, Lenka Zdeborová
- GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao, Xiaowei Zhou
- Online Prediction of Switching Graph Labelings with Cluster Specialists Mark Herbster, James Robinson
- Graph-Based Semi-Supervised Learning with Non-ignorable Non-response Fan Zhou, Tengfei Li, Haibo Zhou, Hongtu Zhu, Ye Jieping
- BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning Andreas Kirsch, Joost van Amersfoort, Yarin Gal
- A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off Yaniv Blumenfeld, Dar Gilboa, Daniel Soudry
- Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs Marek Petrik, Reazul Hasan Russel
- Cross-lingual Language Model Pretraining Alexis CONNEAU, Guillaume Lample
- Approximate Bayesian Inference for a Mechanistic Model of Vesicle Release at a Ribbon Synapse Cornelius Schröder, Ben James, Leon Lagnado, Philipp Berens
- Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Damien Querlioz, Julie Grollier
- Universal Invariant and Equivariant Graph Neural Networks Nicolas Keriven, Gabriel Peyré
- Are sample means in multi-armed bandits positively or negatively biased? Jaehyeok Shin, Aaditya Ramdas, Alessandro Rinaldo
- On the Correctness and Sample Complexity of Inverse Reinforcement Learning Abi Komanduru, Jean Honorio
- VIREL: A Variational Inference Framework for Reinforcement Learning Matthew Fellows, Anuj Mahajan, Tim G. J. Rudner, Shimon Whiteson
- First Order Motion Model for Image Animation Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe
- Tensor Monte Carlo: Particle Methods for the GPU era Laurence Aitchison
- Unsupervised Emergence of Egocentric Spatial Structure from Sensorimotor Prediction Alban Laflaquière, Michael Garcia Ortiz
- Learning from Label Proportions with Generative Adversarial Networks Jiabin Liu, Bo Wang, Zhiquan Qi, YingJie Tian, Yong Shi
- Efficient and Thrifty Voting by Any Means Necessary Debmalya Mandal, Ariel D. Procaccia, Nisarg Shah, David Woodruff
- PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation Can Qin, Haoxuan You, Lichen Wang, C.-C. Jay Kuo, Yun Fu
- ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David Cox
- Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning Erwan Lecarpentier, Emmanuel Rachelson
- Depth-First Proof-Number Search with Heuristic Edge Cost and Application to Chemical Synthesis Planning Akihiro Kishimoto, Beat Buesser, Bei Chen, Adi Botea
- Toward a Characterization of Loss Functions for Distribution Learning Nika Haghtalab, Cameron Musco, Bo Waggoner
- Coresets for Archetypal Analysis Sebastian Mair, Ulf Brefeld
- Emergence of Object Segmentation in Perturbed Generative Models Adam Bielski, Paolo Favaro
- Optimal Sparse Decision Trees Xiyang Hu, Cynthia Rudin, Margo Seltzer
- Escaping from saddle points on Riemannian manifolds Yue Sun, Nicolas Flammarion, Maryam Fazel
- Multi-source Domain Adaptation for Semantic Segmentation Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu, Runbo Hu, Hua Chai, Kurt Keutzer
- Localized Structured Prediction Carlo Ciliberto, Francis Bach, Alessandro Rudi
- Nonzero-sum Adversarial Hypothesis Testing Games Sarath Yasodharan, Patrick Loiseau
- Manifold-regression to predict from MEG/EEG brain signals without source modeling David Sabbagh, Pierre Ablin, Gael Varoquaux, Alexandre Gramfort, Denis A. Engemann
- Modeling Tabular data using Conditional GAN Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni
- Normalization Helps Training of Quantized LSTM Lu Hou, Jinhua Zhu, James Kwok, Fei Gao, Tao Qin, Tie-Yan Liu
- Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration Clarice Poon, Jingwei Liang
- Deep Scale-spaces: Equivariance Over Scale Daniel Worrall, Max Welling
- GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series Edward De Brouwer, Jaak Simm, Adam Arany, Yves Moreau
- Estimating Convergence of Markov chains with L-Lag Couplings Niloy Biswas, Pierre E. Jacob, Paul Vanetti
- Learning-Based Low-Rank Approximations Piotr Indyk, Ali Vakilian, Yang Yuan
- Implicit Regularization in Deep Matrix Factorization Sanjeev Arora, Nadav Cohen, Wei Hu, Yuping Luo
- List-decodable Linear Regression Sushrut Karmalkar, Adam Klivans, Pravesh Kothari
- Learning elementary structures for 3D shape generation and matching Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, Mathieu Aubry
- On the Hardness of Robust Classification Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, James Worrell
- Foundations of Comparison-Based Hierarchical Clustering Debarghya Ghoshdastidar, Michaël Perrot, Ulrike von Luxburg
- What the Vec? Towards Probabilistically Grounded Embeddings Carl Allen, Ivana Balazevic, Timothy Hospedales
- Minimizers of the Empirical Risk and Risk Monotonicity Marco Loog, Tom Viering, Alexander Mey
- Explicit Planning for Efficient Exploration in Reinforcement Learning Liangpeng Zhang, Ke Tang, Xin Yao
- Lower Bounds on Adversarial Robustness from Optimal Transport Arjun Nitin Bhagoji, Daniel Cullina, Prateek Mittal
- Neural Spline Flows Conor Durkan, Artur Bekasov, Iain Murray, George Papamakarios
- Phase Transitions and Cyclic Phenomena in Bandits with Switching Constraints David Simchi-Levi, Yunzong Xu
- Latent Weights Do Not Exist: Rethinking Binarized Neural Network Optimization Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, Roeland Nusselder
- Nonlinear scaling of resource allocation in sensory bottlenecks Laura Rose Edmondson, Alejandro Jimenez Rodriguez, Hannes P. Saal
- Constrained Reinforcement Learning Has Zero Duality Gap Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, Alejandro Ribeiro
- Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules Niklas Gebauer, Michael Gastegger, Kristof Schütt
- An adaptive nearest neighbor rule for classification Akshay Balsubramani, Sanjoy Dasgupta, yoav Freund, Shay Moran
- Coresets for Clustering with Fairness Constraints Lingxiao Huang, Shaofeng Jiang, Nisheeth Vishnoi
- PerspectiveNet: A Scene-consistent Image Generator for New View Synthesis in Real Indoor Environments Ben Graham, David Novotny, Jeremy Reizenstein
- MAVEN: Multi-Agent Variational Exploration Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, Shimon Whiteson
- Competitive Gradient Descent Florian Schaefer, Anima Anandkumar
- Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses Ulysse Marteau-Ferey, Francis Bach, Alessandro Rudi
- Continual Unsupervised Representation Learning Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, Raia Hadsell
- Self-Routing Capsule Networks Taeyoung Hahn, Myeongjang Pyeon, Gunhee Kim
- The Parameterized Complexity of Cascading Portfolio Scheduling Eduard Eiben, Robert Ganian, Iyad Kanj, Stefan Szeider
- Maximum Expected Hitting Cost of a Markov Decision Process and Informativeness of Rewards Falcon Dai, Matthew Walter
- Bipartite expander Hopfield networks as self-decoding high-capacity error correcting codes Rishidev Chaudhuri, Ila Fiete
- Sequence Modeling with Unconstrained Generation Order Dmitrii Emelianenko, Elena Voita, Pavel Serdyukov
- Probabilistic Logic Neural Networks for Reasoning Meng Qu, Jian Tang
- A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families Brian Axelrod, Ilias Diakonikolas, Alistair Stewart, Anastasios Sidiropoulos, Gregory Valiant
- A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening Gecia Bravo Hermsdorff, Lee Gunderson
- Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond Xuechen Li, Yi Wu, Lester Mackey
- The Implicit Bias of AdaGrad on Separable Data Qian Qian, Xiaoyuan Qian
- On two ways to use determinantal point processes for Monte Carlo integration Guillaume Gautier, Rémi Bardenet, Michal Valko
- LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video Recognition Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, Larry S. Davis
- How degenerate is the parametrization of neural networks with the ReLU activation function? Dennis Maximilian Elbrächter, Julius Berner, Philipp Grohs
- Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks Wenrui Zhang, Peng Li
- Re-examination of the Role of Latent Variables in Sequence Modeling Guokun Lai, Zihang Dai, Yiming Yang, Shinjae Yoo
- Max-value Entropy Search for Multi-Objective Bayesian Optimization Syrine Belakaria, Aryan Deshwal, Janardhan Rao Doppa
- Stein Variational Gradient Descent With Matrix-Valued Kernels Dilin Wang, Ziyang Tang, Chandrajit Bajaj, Qiang Liu
- Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms Shahana Ibrahim, Xiao Fu, Nikolaos Kargas, Kejun Huang
- Detecting Overfitting via Adversarial Examples Roman Werpachowski, András György, Csaba Szepesvari
- A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment Felix Leibfried, Sergio Pascual-Díaz, Jordi Grau-Moya
- SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies Seyed Kamyar Seyed Ghasemipour, Shixiang (Shane) Gu, Richard Zemel
- Towards Understanding the Importance of Shortcut Connections in Residual Networks Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, Tuo Zhao
- Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains Elliot Meyerson, Risto Miikkulainen
- Solving Interpretable Kernel Dimensionality Reduction Chieh Wu, Jared Miller, Yale Chang, Mario Sznaier, Jennifer Dy
- Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space Shuo Yang, Yanyao Shen, Sujay Sanghavi
- A Model to Search for Synthesizable Molecules John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin Segler, José Miguel Hernández-Lobato
- Post training 4-bit quantization of convolutional networks for rapid-deployment Ron Banner, Yury Nahshan, Daniel Soudry
- Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, Richard E. Turner
- Differentially Private Anonymized Histograms Ananda Theertha Suresh
- Dynamic Local Regret for Non-convex Online Forecasting Sergul Aydore, Tianhao Zhu, Dean P. Foster
- Learning Local Search Heuristics for Boolean Satisfiability Emre Yolcu, Barnabas Poczos
- Provably Efficient Q-Learning with Low Switching Cost Yu Bai, Tengyang Xie, Nan Jiang, Yu-Xiang Wang
- Solving graph compression via optimal transport Vikas Garg, Tommi Jaakkola
- PyTorch: An Imperative Style, High-Performance Deep Learning Library Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala
- Stability of Graph Scattering Transforms Fernando Gama, Alejandro Ribeiro, Joan Bruna
- A Debiased MDI Feature Importance Measure for Random Forests Xiao Li, Yu Wang, Sumanta Basu, Karl Kumbier, Bin Yu
- Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle Simon S. Du, Yuping Luo, Ruosong Wang, Hanrui Zhang
- Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models Shanshan Wu, Sujay Sanghavi, Alexandros G. Dimakis
- Fast Convergence of Natural Gradient Descent for Over-Parameterized Neural Networks Guodong Zhang, James Martens, Roger B. Grosse
- Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices Santosh Vempala, Andre Wibisono
- Learning Distributions Generated by One-Layer ReLU Networks Shanshan Wu, Alexandros G. Dimakis, Sujay Sanghavi
- Large-scale optimal transport map estimation using projection pursuit Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, Ping Ma
- A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, Alessandro Lazaric
- On Exact Computation with an Infinitely Wide Neural Net Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Russ R. Salakhutdinov, Ruosong Wang
- Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning Gregory Farquhar, Shimon Whiteson, Jakob Foerster
- Chirality Nets for Human Pose Regression Raymond Yeh, Yuan-Ting Hu, Alexander Schwing
- Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds Minshuo Chen, Haoming Jiang, Wenjing Liao, Tuo Zhao
- Fast Decomposable Submodular Function Minimization using Constrained Total Variation Senanayak Sesh Kumar Karri, Francis Bach, Thomas Pock
- Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris Shallue, Roger B. Grosse
- Spherical Text Embedding Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan, Jiawei Han
- Möbius Transformation for Fast Inner Product Search on Graph Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, Ping Li
- Hyperbolic Graph Neural Networks Qi Liu, Maximilian Nickel, Douwe Kiela
- Average Individual Fairness: Algorithms, Generalization and Experiments Saeed Sharifi-Malvajerdi, Michael Kearns, Aaron Roth
- Fixing the train-test resolution discrepancy Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Herve Jegou
- Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes Lingge Li, Dustin Pluta, Babak Shahbaba, Norbert Fortin, Hernando Ombao, Pierre Baldi
- Manipulating a Learning Defender and Ways to Counteract Jiarui Gan, Qingyu Guo, Long Tran-Thanh, Bo An, Michael Wooldridge
- Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, Daniela Rus
- Learning to Infer Implicit Surfaces without 3D Supervision Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li
- Fast and Accurate Least-Mean-Squares Solvers Alaa Maalouf, Ibrahim Jubran, Dan Feldman
- Certifiable Robustness to Graph Perturbations Aleksandar Bojchevski, Stephan Günnemann
- Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay Frederic Koehler
- Paradoxes in Fair Machine Learning Paul Goelz, Anson Kahng, Ariel D. Procaccia
- Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang
- The spiked matrix model with generative priors Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, Lenka Zdeborová
- Gradient Dynamics of Shallow Univariate ReLU Networks Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, Joan Bruna
- Robust and Communication-Efficient Collaborative Learning Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani
- Multiclass Learning from Contradictions Sauptik Dhar, Vladimir Cherkassky, Mohak Shah
- Learning from Trajectories via Subgoal Discovery Sujoy Paul, Jeroen Vanbaar, Amit Roy-Chowdhury
- Distributed Low-rank Matrix Factorization With Exact Consensus Zhihui Zhu, Qiuwei Li, Xinshuo Yang, Gongguo Tang, Michael B. Wakin
- Online Normalization for Training Neural Networks Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la Fuente, Vishal Subbiah, Michael James
- The Synthesis of XNOR Recurrent Neural Networks with Stochastic Logic Arash Ardakani, Zhengyun Ji, Amir Ardakani, Warren Gross
- An adaptive Mirror-Prox method for variational inequalities with singular operators Kimon Antonakopoulos, Veronica Belmega, Panayotis Mertikopoulos
- N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules Shengchao Liu, Mehmet F. Demirel, Yingyu Liang
- Characterizing the Exact Behaviors of Temporal Difference Learning Algorithms Using Markov Jump Linear System Theory Bin Hu, Usman Syed
- Facility Location Problem in Differential Privacy Model Revisited Yunus Esencayi, Marco Gaboardi, Shi Li, Di Wang
- Energy-Inspired Models: Learning with Sampler-Induced Distributions John Lawson, George Tucker, Bo Dai, Rajesh Ranganath
- Finite-time Analysis of Approximate Policy Iteration for the Linear Quadratic Regulator Karl Krauth, Stephen Tu, Benjamin Recht
- A Universally Optimal Multistage Accelerated Stochastic Gradient Method Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, Asuman Ozdaglar
- From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction Hidenori Tanaka, Aran Nayebi, Niru Maheswaranathan, Lane McIntosh, Stephen Baccus, Surya Ganguli
- Large Memory Layers with Product Keys Guillaume Lample, Alexandre Sablayrolles, Marc'Aurelio Ranzato, Ludovic Denoyer, Herve Jegou
- Learning Deterministic Weighted Automata with Queries and Counterexamples Gail Weiss, Yoav Goldberg, Eran Yahav
- Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, Jeffrey Pennington
- Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals Surbhi Goel, Sushrut Karmalkar, Adam Klivans
- Visualizing and Measuring the Geometry of BERT Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B. Viegas, Andy Coenen, Adam Pearce, Been Kim
- Self-Critical Reasoning for Robust Visual Question Answering Jialin Wu, Raymond Mooney
- Learning to Screen Alon Cohen, Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Shay Moran
- A Communication Efficient Stochastic Multi-Block Alternating Direction Method of Multipliers Hao Yu
- A Little Is Enough: Circumventing Defenses For Distributed Learning Gilad Baruch, Moran Baruch, Yoav Goldberg
- Error Correcting Output Codes Improve Probability Estimation and Adversarial Robustness of Deep Neural Networks Gunjan Verma, Ananthram Swami
- A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions Yuan Deng, Sébastien Lahaie, Vahab Mirrokni
- Finite-Sample Analysis for SARSA with Linear Function Approximation Shaofeng Zou, Tengyu Xu, Yingbin Liang
- Who is Afraid of Big Bad Minima? Analysis of gradient-flow in spiked matrix-tensor models Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Lenka Zdeborová
- Graph Structured Prediction Energy Networks Colin Graber, Alexander Schwing
- Private Learning Implies Online Learning: An Efficient Reduction Alon Gonen, Elad Hazan, Shay Moran
- Graph Agreement Models for Semi-Supervised Learning Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Emmanouil Platanios, Sujith Ravi, Andrew Tomkins
- Latent distance estimation for random geometric graphs Ernesto Araya Valdivia, De Castro Yohann
- Seeing the Wind: Visual Wind Speed Prediction with a Coupled Convolutional and Recurrent Neural Network Jennifer Cardona, Michael Howland, John Dabiri
- The Functional Neural Process Christos Louizos, Xiahan Shi, Klamer Schutte, Max Welling
- Recurrent Registration Neural Networks for Deformable Image Registration Robin Sandkühler, Simon Andermatt, Grzegorz Bauman, Sylvia Nyilas, Christoph Jud, Philippe C. Cattin
- Unsupervised State Representation Learning in Atari Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm
- Unlocking Fairness: a Trade-off Revisited Michael Wick, swetasudha panda, Jean-Baptiste Tristan
- Fisher Efficient Inference of Intractable Models Song Liu, Takafumi Kanamori, Wittawat Jitkrittum, Yu Chen
- Thompson Sampling and Approximate Inference My Phan, Yasin Abbasi Yadkori, Justin Domke
- PRNet: Self-Supervised Learning for Partial-to-Partial Registration Yue Wang, Justin M. Solomon
- Surrogate Objectives for Batch Policy Optimization in One-step Decision Making Minmin Chen, Ramki Gummadi, Chris Harris, Dale Schuurmans
- Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians Axel Brando, Jose A. Rodriguez, Jordi Vitria, Alberto Rubio Muñoz
- Learning Macroscopic Brain Connectomes via Group-Sparse Factorization Farzane Aminmansour, Andrew Patterson, Lei Le, Yisu Peng, Daniel Mitchell, Franco Pestilli, Cesar F. Caiafa, Russell Greiner, Martha White
- Approximating the Permanent by Sampling from Adaptive Partitions Jonathan Kuck, Tri Dao, Hamid Rezatofighi, Ashish Sabharwal, Stefano Ermon
- Retrosynthesis Prediction with Conditional Graph Logic Network Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, Le Song
- Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, Devon Graham
- Online Learning via the Differential Privacy Lens Jacob D. Abernethy, Young Hun Jung, Chansoo Lee, Audra McMillan, Ambuj Tewari
- PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points Siyuan Huang, Yixin Chen, Tao Yuan, Siyuan Qi, Yixin Zhu, Song-Chun Zhu
- Parameter elimination in particle Gibbs sampling Anna Wigren, Riccardo Sven Risuleo, Lawrence Murray, Fredrik Lindsten
- This Looks Like That: Deep Learning for Interpretable Image Recognition Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, Jonathan K. Su
- Adaptively Aligned Image Captioning via Adaptive Attention Time Lun Huang, Wenmin Wang, Yaxian Xia, Jie Chen
- Accurate Uncertainty Estimation and Decomposition in Ensemble Learning Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, Brent Coull
- Learning Bayesian Networks with Low Rank Conditional Probability Tables Adarsh Barik, Jean Honorio
- Equal Opportunity in Online Classification with Partial Feedback Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Steven Z. Wu
- Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, Tomer Ullman
- Neural Multisensory Scene Inference Jae Hyun Lim, Pedro O. O. Pinheiro, Negar Rostamzadeh, Chris Pal, Sungjin Ahn
- Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems Young Hun Jung, Ambuj Tewari
- What Can ResNet Learn Efficiently, Going Beyond Kernels? Zeyuan Allen-Zhu, Yuanzhi Li
- Better Transfer Learning with Inferred Successor Maps Tamas Madarasz, Tim Behrens
- Unsupervised Co-Learning on G-Manifolds Across Irreducible Representations Yifeng Fan, Tingran Gao, Zhizhen Jane Zhao
- Defending Against Neural Fake News Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, Yejin Choi
- Sample Adaptive MCMC Michael Zhu
- A Stochastic Composite Gradient Method with Incremental Variance Reduction Junyu Zhang, Lin Xiao
- Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses Ananya Uppal, Shashank Singh, Barnabas Poczos
- STAR-Caps: Capsule Networks with Straight-Through Attentive Routing Karim Ahmed, Lorenzo Torresani
- Limitations of Lazy Training of Two-layers Neural Network Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, Andrea Montanari
- Reconciling meta-learning and continual learning with online mixtures of tasks Ghassen Jerfel, Erin Grant, Tom Griffiths, Katherine A. Heller
- Distributionally Robust Optimization and Generalization in Kernel Methods Matthew Staib, Stefanie Jegelka
- A General Theory of Equivariant CNNs on Homogeneous Spaces Taco S. Cohen, Mario Geiger, Maurice Weiler
- Trivializations for Gradient-Based Optimization on Manifolds Mario Lezcano Casado
- Write, Execute, Assess: Program Synthesis with a REPL Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, Armando Solar-Lezama
- A Meta-Analysis of Overfitting in Machine Learning Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil, Moritz Hardt, John Miller, Ludwig Schmidt
- (Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm, Yueqi Sheng
- Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models Farnam Mansouri, Yuxin Chen, Ara Vartanian, Jerry Zhu, Adish Singla
- Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi
- Sampling Networks and Aggregate Simulation for Online POMDP Planning Hao(Jackson) Cui, Roni Khardon
- Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks Gabriele Farina, Chun Kai Ling, Fei Fang, Tuomas Sandholm
- GNNExplainer: Generating Explanations for Graph Neural Networks Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
- Linear Stochastic Bandits Under Safety Constraints Sanae Amani, Mahnoosh Alizadeh, Christos Thrampoulidis
- A coupled autoencoder approach for multi-modal analysis of cell types Rohan Gala, Nathan Gouwens, Zizhen Yao, Agata Budzillo, Osnat Penn, Bosiljka Tasic, Gabe Murphy, Hongkui Zeng, Uygar Sümbül
- Towards Automatic Concept-based Explanations Amirata Ghorbani, James Wexler, James Y. Zou, Been Kim
- Deep Generative Video Compression Salvator Lombardo, JUN HAN, Christopher Schroers, Stephan Mandt
- Budgeted Reinforcement Learning in Continuous State Space Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, Olivier Pietquin
- Discovery of Useful Questions as Auxiliary Tasks Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh, Hado P. van Hasselt, David Silver, Satinder Singh
- Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm Giulia Luise, Saverio Salzo, Massimiliano Pontil, Carlo Ciliberto
- Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, Joan Bruna
- Correlation clustering with local objectives Sanchit Kalhan, Konstantin Makarychev, Timothy Zhou
- Multiclass Performance Metric Elicitation Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, Oluwasanmi O. Koyejo
- Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing Zhiqi Bu, Jason Klusowski, Cynthia Rush, Weijie Su
- Explicit Explore-Exploit Algorithms in Continuous State Spaces Mikael Henaff
- ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls Jinjin Tian, Aaditya Ramdas
- Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices Vincent Chen, Sen Wu, Alexander J. Ratner, Jen Weng, Christopher Ré
- Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse James Lucas, George Tucker, Roger B. Grosse, Mohammad Norouzi
- Language as an Abstraction for Hierarchical Deep Reinforcement Learning YiDing Jiang, Shixiang (Shane) Gu, Kevin P. Murphy, Chelsea Finn
- Efficient online learning with kernels for adversarial large scale problems Rémi Jézéquel, Pierre Gaillard, Alessandro Rudi
- A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning Zhihui Zhu, Tianyu Ding, Daniel Robinson, Manolis Tsakiris, René Vidal
- ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, Boris Katz
- Certified Adversarial Robustness with Additive Noise Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin
- Tight Dimensionality Reduction for Sketching Low Degree Polynomial Kernels Michela Meister, Tamas Sarlos, David Woodruff
- Non-Cooperative Inverse Reinforcement Learning Xiangyuan Zhang, Kaiqing Zhang, Erik Miehling, Tamer Basar
- DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization Rixon Crane, Fred Roosta
- Sobolev Independence Criterion Youssef Mroueh, Tom Sercu, Mattia Rigotti, Inkit Padhi, Cicero Nogueira dos Santos
- Maximum Entropy Monte-Carlo Planning Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, Martin Müller
- Learning from brains how to regularize machines Zhe Li, Wieland Brendel, Edgar Walker, Erick Cobos, Taliah Muhammad, Jacob Reimer, Matthias Bethge, Fabian Sinz, Zachary Pitkow, Andreas Tolias
- Using Statistics to Automate Stochastic Optimization Hunter Lang, Lin Xiao, Pengchuan Zhang
- Zero-shot Knowledge Transfer via Adversarial Belief Matching Paul Micaelli, Amos J. Storkey
- Differentiable Convex Optimization Layers Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, J. Zico Kolter
- Random Tessellation Forests Shufei Ge, Shijia Wang, Yee Whye Teh, Liangliang Wang, Lloyd Elliott
- Learning Nearest Neighbor Graphs from Noisy Distance Samples Blake Mason, Ardhendu Tripathy, Robert Nowak
- Lookahead Optimizer: k steps forward, 1 step back Michael Zhang, James Lucas, Jimmy Ba, Geoffrey E. Hinton
- Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, Sanja Fidler
- Covariate-Powered Empirical Bayes Estimation Nikolaos Ignatiadis, Stefan Wager
- Understanding the Role of Momentum in Stochastic Gradient Methods Igor Gitman, Hunter Lang, Pengchuan Zhang, Lin Xiao
- A neurally plausible model for online recognition and postdiction in a dynamical environment Li Kevin Wenliang, Maneesh Sahani
- Guided Meta-Policy Search Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn
- Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling Tengyang Xie, Yifei Ma, Yu-Xiang Wang
- Contextual Bandits with Cross-Learning Santiago Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab Mirrokni, Jon Schneider
- Evaluating Protein Transfer Learning with TAPE Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel, Yun Song
- A Bayesian Theory of Conformity in Collective Decision Making Koosha Khalvati, Saghar Mirbagheri, Seongmin A. Park, Jean-Claude Dreher, Rajesh PN Rao
- Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel Colin Wei, Jason D. Lee, Qiang Liu, Tengyu Ma
- Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation Colin Wei, Tengyu Ma
- A Benchmark for Interpretability Methods in Deep Neural Networks Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, Been Kim
- Memory Efficient Adaptive Optimization Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer
- Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions Negin Golrezaei, Adel Javanmard, Vahab Mirrokni
- Convergence-Rate-Matching Discretization of Accelerated Optimization Flows Through Opportunistic State-Triggered Control Miguel Vaquero, Jorge Cortes
- A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, Cho-Jui Hsieh
- Compositional generalization through meta sequence-to-sequence learning Brenden M. Lake
- Bayesian Joint Estimation of Multiple Graphical Models Lingrui Gan, Xinming Yang, Naveen Narisetty, Feng Liang
- Practical Two-Step Lookahead Bayesian Optimization Jian Wu, Peter Frazier
- Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models Yunfei Teng, Wenbo Gao, François Chalus, Anna E. Choromanska, Donald Goldfarb, Adrian Weller
- A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, Pengchuan Zhang
- Neural Jump Stochastic Differential Equations Junteng Jia, Austin R. Benson
- Learning metrics for persistence-based summaries and applications for graph classification Qi Zhao, Yusu Wang
- On the Value of Target Data in Transfer Learning Steve Hanneke, Samory Kpotufe
- Stochastic Variance Reduced Primal Dual Algorithms for Empirical Composition Optimization Adithya M Devraj, Jianshu Chen
- On Robustness of Principal Component Regression Anish Agarwal, Devavrat Shah, Dennis Shen, Dogyoon Song
- Meta Learning with Relational Information for Short Sequences Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, Hongyuan Zha
- Residual Flows for Invertible Generative Modeling Tian Qi Chen, Jens Behrmann, David K. Duvenaud, Joern-Henrik Jacobsen
- Multi-Agent Common Knowledge Reinforcement Learning Christian Schroeder de Witt, Jakob Foerster, Gregory Farquhar, Philip Torr, Wendelin Boehmer, Shimon Whiteson
- Learning to Learn By Self-Critique Antreas Antoniou, Amos J. Storkey
- Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes Greg Yang
- Neural Networks with Cheap Differential Operators Tian Qi Chen, David K. Duvenaud
- Transductive Zero-Shot Learning with Visual Structure Constraint Ziyu Wan, Dongdong Chen, Yan Li, Xingguang Yan, Junge Zhang, Yizhou Yu, Jing Liao
- Dying Experts: Efficient Algorithms with Optimal Regret Bounds Hamid Shayestehmanesh, Sajjad Azami, Nishant A. Mehta
- Model Similarity Mitigates Test Set Overuse Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, Benjamin Recht
- A unified theory for the origin of grid cells through the lens of pattern formation Ben Sorscher, Gabriel Mel, Surya Ganguli, Samuel Ocko
- On Sample Complexity Upper and Lower Bounds for Exact Ranking from Noisy Comparisons Wenbo Ren, Jia (Kevin) Liu, Ness Shroff
- Hierarchical Decision Making by Generating and Following Natural Language Instructions Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, Mike Lewis
- SHE: A Fast and Accurate Deep Neural Network for Encrypted Data Qian Lou, Lei Jiang
- Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond Lin Chen, Hossein Esfandiari, Gang Fu, Vahab Mirrokni
- A Game Theoretic Approach to Class-wise Selective Rationalization Shiyu Chang, Yang Zhang, Mo Yu, Tommi Jaakkola
- Efficiently avoiding saddle points with zero order methods: No gradients required Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, Georgios Piliouras
- Metamers of neural networks reveal divergence from human perceptual systems Jenelle Feather, Alex Durango, Ray Gonzalez, Josh McDermott
- Spatial-Aware Feature Aggregation for Image based Cross-View Geo-Localization Yujiao Shi, Liu Liu, Xin Yu, Hongdong Li
- Decentralized sketching of low rank matrices Rakshith Sharma Srinivasa, Kiryung Lee, Marius Junge, Justin Romberg
- Average Case Column Subset Selection for Entrywise \ell_1-Norm Loss Zhao Song, David Woodruff, Peilin Zhong
- Efficient Forward Architecture Search Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric J. Horvitz, Debadeepta Dey
- Unsupervised Meta-Learning for Few-Shot Image Classification Siavash Khodadadeh, Ladislau Boloni, Mubarak Shah
- Learning Mixtures of Plackett-Luce Models from Structured Partial Orders Zhibing Zhao, Lirong Xia
- Certainty Equivalence is Efficient for Linear Quadratic Control Horia Mania, Stephen Tu, Benjamin Recht
- Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models Ruoxi Sun, Scott Linderman, Ian Kinsella, Liam Paninski
- Logarithmic Regret for Online Control Naman Agarwal, Elad Hazan, Karan Singh
- Elliptical Perturbations for Differential Privacy Matthew Reimherr, Jordan Awan
- Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, Yang Liu
- KNG: The K-Norm Gradient Mechanism Matthew Reimherr, Jordan Awan
- CXPlain: Causal Explanations for Model Interpretation under Uncertainty Patrick Schwab, Walter Karlen
- Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, Gao Huang
- STREETS: A Novel Camera Network Dataset for Traffic Flow Corey Snyder, Minh Do
- Sequential Neural Processes Gautam Singh, Jaesik Yoon, Youngsung Son, Sungjin Ahn
- Policy Continuation with Hindsight Inverse Dynamics Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, Dahua Lin
- Learning to Self-Train for Semi-Supervised Few-Shot Classification Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, Bernt Schiele
- Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. Sawyer Birnbaum, Volodymyr Kuleshov, Zayd Enam, Pang Wei W. Koh, Stefano Ermon
- From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization Krzysztof M. Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Vikas Sindhwani
- On the Expressive Power of Deep Polynomial Neural Networks Joe Kileel, Matthew Trager, Joan Bruna
- DETOX: A Redundancy-based Framework for Faster and More Robust Gradient Aggregation Shashank Rajput, Hongyi Wang, Zachary Charles, Dimitris Papailiopoulos
- Can SGD Learn Recurrent Neural Networks with Provable Generalization? Zeyuan Allen-Zhu, Yuanzhi Li
- Limits of Private Learning with Access to Public Data Raef Bassily, Shay Moran, Noga Alon
- Discrete Object Generation with Reversible Inductive Construction Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, Ryan P. Adams
- Efficient Near-Optimal Testing of Community Changes in Balanced Stochastic Block Models Aditya Gangrade, Praveen Venkatesh, Bobak Nazer, Venkatesh Saligrama
- Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards Alexander Trott, Stephan Zheng, Caiming Xiong, Richard Socher
- Superset Technique for Approximate Recovery in One-Bit Compressed Sensing Larkin Flodin, Venkata Gandikota, Arya Mazumdar
- Bandits with Feedback Graphs and Switching Costs Raman Arora, Teodor Vanislavov Marinov, Mehryar Mohri
- Functional Adversarial Attacks Cassidy Laidlaw, Soheil Feizi
- Statistical-Computational Tradeoff in Single Index Models Lingxiao Wang, Zhuoran Yang, Zhaoran Wang
- On Fenchel Mini-Max Learning Chenyang Tao, Liqun Chen, Shuyang Dai, Junya Chen, Ke Bai, Dong Wang, Jianfeng Feng, Wenlian Lu, Georgiy Bobashev, Lawrence Carin
- MarginGAN: Adversarial Training in Semi-Supervised Learning Jinhao Dong, Tong Lin
- Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, Georgios Piliouras
- A unified variance-reduced accelerated gradient method for convex optimization Guanghui Lan, Zhize Li, Yi Zhou
- Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi
- Same-Cluster Querying for Overlapping Clusters Wasim Huleihel, Arya Mazumdar, Muriel Medard, Soumyabrata Pal
- Efficient Convex Relaxations for Streaming PCA Raman Arora, Teodor Vanislavov Marinov
- Learning Robust Global Representations by Penalizing Local Predictive Power Haohan Wang, Songwei Ge, Zachary Lipton, Eric P. Xing
- Unsupervised Curricula for Visual Meta-Reinforcement Learning Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, Chelsea Finn
- Sample Complexity of Learning Mixture of Sparse Linear Regressions Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, Soumyabrata Pal
- Large Scale Adversarial Representation Learning Jeff Donahue, Karen Simonyan
- G2SAT: Learning to Generate SAT Formulas Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, Jure Leskovec
- Neural Trust Region/Proximal Policy Optimization Attains Globally Optimal Policy Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang
- Dimensionality reduction: theoretical perspective on practical measures Yair Bartal, Nova Fandina, Ofer Neiman
- Oracle-Efficient Algorithms for Online Linear Optimization with Bandit Feedback Shinji Ito, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, Ken-Ichi Kawarabayashi
- Multilabel reductions: what is my loss optimising?
- Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks Yuan Cao, Quanquan Gu
- Deep Gamblers: Learning to Abstain with Portfolio Theory Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R. Salakhutdinov, Louis-Philippe Morency, Masahito Ueda
- Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples Tengyu Xu, Shaofeng Zou, Yingbin Liang
- Transfer Learning via Minimizing the Performance Gap Between Domains Boyu Wang, Jorge Mendez, Mingbo Cai, Eric Eaton
- Splitting Steepest Descent for Growing Neural Architectures Lemeng Wu, Dilin Wang, Qiang Liu
- Sequential Experimental Design for Transductive Linear Bandits Tanner Fiez, Lalit Jain, Kevin G. Jamieson, Lillian Ratliff
- Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence Aditya Sharad Golatkar, Alessandro Achille, Stefano Soatto
- Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, Alistair Stewart
- Variational Graph Recurrent Neural Networks Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian
- Semi-Implicit Graph Variational Auto-Encoders Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian
- Unsupervised Learning of Object Keypoints for Perception and Control Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew Zisserman, Volodymyr Mnih
- A Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation Xueying Bai, Jian Guan, Hongning Wang
- Optimizing Generalized Rate Metrics with Three Players Harikrishna Narasimhan, Andrew Cotter, Maya Gupta
- Consistency-based Semi-supervised Learning for Object detection Jisoo Jeong, Seungeui Lee, Jeesoo Kim, Nojun Kwak
- Rates of Convergence for Large-scale Nearest Neighbor Classification Xingye Qiao, Jiexin Duan, Guang Cheng
- An Embedding Framework for Consistent Polyhedral Surrogates Jessica Finocchiaro, Rafael Frongillo, Bo Waggoner
- Cross-Modal Learning with Adversarial Samples CHAO LI, Shangqian Gao, Cheng Deng, De Xie, Wei Liu
- Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes Jun Yang, Shengyang Sun, Daniel M. Roy
- Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks Aya Abdelsalam Ismail, Mohamed Gunady, Luiz Pessoa, Hector Corrada Bravo, Soheil Feizi
- Program Synthesis and Semantic Parsing with Learned Code Idioms Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, Alex Polozov
- Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks Yuan Cao, Quanquan Gu
- High-Dimensional Optimization in Adaptive Random Subspaces Jonathan Lacotte, Mert Pilanci, Marco Pavone
- Random Projections with Asymmetric Quantization Xiaoyun Li, Ping Li
- Superposition of many models into one Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, Bruno Olshausen
- Private Testing of Distributions via Sample Permutations Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, Ronitt Rubinfeld
- McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds Rui (Ray) Zhang, Xingwu Liu, Yuyi Wang, Liwei Wang
- How to Initialize your Network? Robust Initialization for WeightNorm & ResNets Devansh Arpit, Víctor Campos, Yoshua Bengio
- On Making Stochastic Classifiers Deterministic Andrew Cotter, Maya Gupta, Harikrishna Narasimhan
- Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection Xiaoyi Gu, Leman Akoglu, Alessandro Rinaldo
- Improving Black-box Adversarial Attacks with a Transfer-based Prior Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu
- Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks Sitao Luan, Mingde Zhao, Xiao-Wen Chang, Doina Precup
- Statistical Model Aggregation via Parameter Matching Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang
- On the (In)fidelity and Sensitivity of Explanations Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I. Inouye, Pradeep K. Ravikumar
- Exponential Family Estimation via Adversarial Dynamics Embedding Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans
- The Broad Optimality of Profile Maximum Likelihood Yi Hao, Alon Orlitsky
- MintNet: Building Invertible Neural Networks with Masked Convolutions Yang Song, Chenlin Meng, Stefano Ermon
- Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, Daniel M. Roy
- On Distributed Averaging for Stochastic k-PCA Aditya Bhaskara, Pruthuvi Maheshakya Wijewardena
- Controllable Unsupervised Text Attribute Transfer via Editing Entangled Latent Representation Ke Wang, Hang Hua, Xiaojun Wan
- MaxGap Bandit: Adaptive Algorithms for Approximate Ranking Sumeet Katariya, Ardhendu Tripathy, Robert Nowak
- Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric J. Horvitz, Stefano Ermon
- Online Forecasting of Total-Variation-bounded Sequences Dheeraj Baby, Yu-Xiang Wang
- Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, Viveck Cadambe
- Data Parameters: A New Family of Parameters for Learning a Differentiable Curriculum Shreyas Saxena, Oncel Tuzel, Dennis DeCoste
- Unified Sample-Optimal Property Estimation in Near-Linear Time Yi Hao, Alon Orlitsky
- Region Mutual Information Loss for Semantic Segmentation Shuai Zhao, Yang Wang, Zheng Yang, Deng Cai
- Learning Stable Deep Dynamics Models J. Zico Kolter, Gaurav Manek
- Image Captioning: Transforming Objects into Words Simao Herdade, Armin Kappeler, Kofi Boakye, Joao Soares
- Greedy Sampling for Approximate Clustering in the Presence of Outliers Aditya Bhaskara, Sharvaree Vadgama, Hong Xu
- Adversarial Fisher Vectors for Unsupervised Representation Learning Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua Susskind
- On Tractable Computation of Expected Predictions Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, Guy Van den Broeck
- Levenshtein Transformer Jiatao Gu, Changhan Wang, Junbo Zhao
- Unlabeled Data Improves Adversarial Robustness Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy S. Liang
- Machine Teaching of Active Sequential Learners Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, Samuel Kaski
- Gaussian-Based Pooling for Convolutional Neural Networks Takumi Kobayashi
- Meta Architecture Search Albert Shaw, Wei Wei, Weiyang Liu, Le Song, Bo Dai
- NAOMI: Non-Autoregressive Multiresolution Sequence Imputation Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, Yisong Yue
- Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, Quanquan Gu
- Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test Lizhong Ding, Mengyang Yu, Li Liu, Fan Zhu, Yong Liu, Yu Li, Ling Shao
- Distribution oblivious, risk-aware algorithms for multi-armed bandits with unbounded rewards Anmol Kagrecha, Jayakrishnan Nair, Krishna Jagannathan
- Private Stochastic Convex Optimization with Optimal Rates Raef Bassily, Vitaly Feldman, Kunal Talwar, Abhradeep Guha Thakurta
- Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, Greg Yang
- Demystifying Black-box Models with Symbolic Metamodels Ahmed M. Alaa, Mihaela van der Schaar
- Neural Temporal-Difference Learning Converges to Global Optima Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang
- Privacy-Preserving Q-Learning with Functional Noise in Continuous Spaces Baoxiang Wang, Nidhi Hegde
- Attentive State-Space Modeling of Disease Progression Ahmed M. Alaa, Mihaela van der Schaar
- Online EXP3 Learning in Adversarial Bandits with Delayed Feedback Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose Blanchet
- A Direct tilde{O}(1/epsilon) Iteration Parallel Algorithm for Optimal Transport Arun Jambulapati, Aaron Sidford, Kevin Tian
- Faster Boosting with Smaller Memory Julaiti Alafate, Yoav S. Freund
- Variance Reduction for Matrix Games Yair Carmon, Yujia Jin, Aaron Sidford, Kevin Tian
- Learning Neural Networks with Adaptive Regularization Han Zhao, Yao-Hung Hubert Tsai, Russ R. Salakhutdinov, Geoffrey J. Gordon
- Distributed estimation of the inverse Hessian by determinantal averaging Michal Derezinski, Michael W. Mahoney
- Smoothing Structured Decomposable Circuits Andy Shih, Guy Van den Broeck, Paul Beame, Antoine Amarilli
- Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, George Pappas
- Provable Non-linear Inductive Matrix Completion Kai Zhong, Zhao Song, Prateek Jain, Inderjit S. Dhillon
- Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback Shuai Zheng, Ziyue Huang, James Kwok
- Sparse Variational Inference: Bayesian Coresets from Scratch Trevor Campbell, Boyan Beronov
- Personalizing Many Decisions with High-Dimensional Covariates Nima Hamidi, Mohsen Bayati, Kapil Gupta
- A Necessary and Sufficient Stability Notion for Adaptive Generalization Moshe Shenfeld, Katrina Ligett
- Necessary and Sufficient Geometries for Gradient Methods Daniel Levy, John C. Duchi
- Landmark Ordinal Embedding Nikhil Ghosh, Yuxin Chen, Yisong Yue
- Identification of Conditional Causal Effects under Markov Equivalence Amin Jaber, Jiji Zhang, Elias Bareinboim
- The Thermodynamic Variational Objective Vaden Masrani, Tuan Anh Le, Frank Wood
- Global Guarantees for Blind Demodulation with Generative Priors Paul Hand, Babhru Joshi
- Exact sampling of determinantal point processes with sublinear time preprocessing Michal Derezinski, Daniele Calandriello, Michal Valko
- Geometry-Aware Neural Rendering Joshua Tobin, Wojciech Zaremba, Pieter Abbeel
- Variational Temporal Abstraction Taesup Kim, Sungjin Ahn, Yoshua Bengio
- Subquadratic High-Dimensional Hierarchical Clustering Amir Abboud, Vincent Cohen-Addad, Hussein Houdrouge
- Learning Auctions with Robust Incentive Guarantees Jacob D. Abernethy, Rachel Cummings, Bhuvesh Kumar, Sam Taggart, Jamie H. Morgenstern
- Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games Kaiqing Zhang, Zhuoran Yang, Tamer Basar
- Uniform convergence may be unable to explain generalization in deep learning Vaishnavh Nagarajan, J. Zico Kolter
- A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S. Turek, Tim Mattson, Abdullah Muzahid
- DTWNet: a Dynamic Time Warping Network Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, Sanguthevar Rajasekaran
- Structured Graph Learning Via Laplacian Spectral Constraints Sandeep Kumar, Jiaxi Ying, Jose Vinicius de Miranda Cardoso, Daniel Palomar
- Thresholding Bandit with Optimal Aggregate Regret Chao Tao, Saúl Blanco, Jian Peng, Yuan Zhou
- Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks Yuanzhi Li, Colin Wei, Tengyu Ma
- Rethinking Kernel Methods for Node Representation Learning on Graphs Yu Tian, Long Zhao, Xi Peng, Dimitris Metaxas
- Causal Confusion in Imitation Learning Pim de Haan, Dinesh Jayaraman, Sergey Levine
- Optimizing Generalized PageRank Methods for Seed-Expansion Community Detection Pan Li, I Chien, Olgica Milenkovic
- The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data Amanda Gentzel, Dan Garant, David Jensen
- Dimension-Free Bounds for Low-Precision Training Zheng Li, Christopher M. De Sa
- Concentration of risk measures: A Wasserstein distance approach Sanjay P. Bhat, Prashanth L.A.
- Meta-Inverse Reinforcement Learning with Probabilistic Context Variables Lantao Yu, Tianhe Yu, Chelsea Finn, Stefano Ermon
- Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, Sergey Levine
- Bayesian Optimization with Unknown Search Space Huong Ha, Santu Rana, Sunil Gupta, Thanh Nguyen, Hung Tran-The, Svetha Venkatesh
- On the Downstream Performance of Compressed Word Embeddings Avner May, Jian Zhang, Tri Dao, Christopher Ré
- Multivariate Distributionally Robust Convex Regression under Absolute Error Loss Jose Blanchet, Peter W. Glynn, Jun Yan, Zhengqing Zhou
- Neural Relational Inference with Fast Modular Meta-learning Ferran Alet, Erica Weng, Tomás Lozano-Pérez, Leslie Pack Kaelbling
- Gradient based sample selection for online continual learning Rahaf Aljundi, Min Lin, Baptiste Goujaud, Yoshua Bengio
- Attribution-Based Confidence Metric For Deep Neural Networks Susmit Jha, Sunny Raj, Steven Fernandes, Sumit K. Jha, Somesh Jha, Brian Jalaian, Gunjan Verma, Ananthram Swami
- Theoretical evidence for adversarial robustness through randomization Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger, Cedric Gouy-Pailler, Jamal Atif
- Online Continual Learning with Maximal Interfered Retrieval Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, Lucas Page-Caccia
- Neural Attribution for Semantic Bug-Localization in Student Programs Rahul Gupta, Aditya Kanade, Shirish Shevade
- Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates Carlos Riquelme, Hugo Penedones, Damien Vincent, Hartmut Maennel, Sylvain Gelly, Timothy A. Mann, Andre Barreto, Gergely Neu
- SPoC: Search-based Pseudocode to Code Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, Percy S. Liang
- Generative Modeling by Estimating Gradients of the Data Distribution Yang Song, Stefano Ermon
- Adversarial Music: Real world Audio Adversary against Wake-word Detection System Juncheng Li, Shuhui Qu, Xinjian Li, Joseph Szurley, J. Zico Kolter, Florian Metze
- Prediction of Spatial Point Processes: Regularized Method with Out-of-Sample Guarantees Muhammad Osama, Dave Zachariah, Peter Stoica
- Debiased Bayesian inference for average treatment effects Kolyan Ray, Botond Szabo
- Margin-Based Generalization Lower Bounds for Boosted Classifiers Allan Grønlund, Lior Kamma, Kasper Green Larsen, Alexander Mathiasen, Jelani Nelson
- Connections Between Mirror Descent, Thompson Sampling and the Information Ratio Julian Zimmert, Tor Lattimore
- Graph Transformer Networks Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, Hyunwoo J. Kim
- Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder Ji Feng, Qi-Zhi Cai, Zhi-Hua Zhou
- The Impact of Regularization on High-dimensional Logistic Regression Fariborz Salehi, Ehsan Abbasi, Babak Hassibi
- Adaptive Density Estimation for Generative Models Thomas Lucas, Konstantin Shmelkov, Karteek Alahari, Cordelia Schmid, Jakob Verbeek
- Fast and Provable ADMM for Learning with Generative Priors Fabian Latorre, Armin eftekhari, Volkan Cevher
- Weighted Linear Bandits for Non-Stationary Environments Yoan Russac, Claire Vernade, Olivier Cappé
- Improved Regret Bounds for Bandit Combinatorial Optimization Shinji Ito, Daisuke Hatano, Hanna Sumita, Kei Takemura, Takuro Fukunaga, Naonori Kakimura, Ken-Ichi Kawarabayashi
- Pareto Multi-Task Learning Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, Sam Kwong
- SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed Bandits Etienne Boursier, Vianney Perchet
- Novel positional encodings to enable tree-based transformers Vighnesh Shiv, Chris Quirk
- A Domain Agnostic Measure for Monitoring and Evaluating GANs Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause
- Submodular Function Minimization with Noisy Evaluation Oracle Shinji Ito
- Counting the Optimal Solutions in Graphical Models Radu Marinescu, Rina Dechter
- Modelling the Dynamics of Multiagent Q-Learning in Repeated Symmetric Games: a Mean Field Theoretic Approach Shuyue Hu, Chin-wing Leung, Ho-fung Leung
- Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong, Qibin Zhao
- Bootstrapping Upper Confidence Bound Botao Hao, Yasin Abbasi Yadkori, Zheng Wen, Guang Cheng
- Integer Discrete Flows and Lossless Compression Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, Max Welling
- Structured Prediction with Projection Oracles Mathieu Blondel
- A Primal Dual Formulation For Deep Learning With Constraints Yatin Nandwani, Abhishek Pathak, Mausam, Parag Singla
- Screening Sinkhorn Algorithm for Regularized Optimal Transport Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, Alain Rakotomamonjy
- PAC-Bayes Un-Expected Bernstein Inequality Zakaria Mhammedi, Peter Grünwald, Benjamin Guedj
- Are Labels Required for Improving Adversarial Robustness? Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth, Pushmeet Kohli
- Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, Shie Mannor
- Multi-objective Bayesian optimisation with preferences over objectives Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
- Think out of the "Box": Generically-Constrained Asynchronous Composite Optimization and Hedging Pooria Joulani, András György, Csaba Szepesvari
- Calibration tests in multi-class classification: A unifying framework David Widmann, Fredrik Lindsten, Dave Zachariah
- Classification Accuracy Score for Conditional Generative Models Suman Ravuri, Oriol Vinyals
- Theoretical Analysis of Adversarial Learning: A Minimax Approach Zhuozhuo Tu, Jingwei Zhang, Dacheng Tao
- Multiagent Evaluation under Incomplete Information Mark Rowland, Shayegan Omidshafiei, Karl Tuyls, Julien Perolat, Michal Valko, Georgios Piliouras, Remi Munos
- Tree-Sliced Variants of Wasserstein Distances Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi
- Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach
- Comparing distributions: \ell_1 geometry improves kernel two-sample testing meyer scetbon, Gael Varoquaux
- Robustness Verification of Tree-based Models Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, Cho-Jui Hsieh
- Towards Interpretable Reinforcement Learning Using Attention Augmented Agents Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, Danilo Jimenez Rezende
- Fast and Accurate Stochastic Gradient Estimation Beidi Chen, Yingchen Xu, Anshumali Shrivastava
- Theoretical Limits of Pipeline Parallel Optimization and Application to Distributed Deep Learning Igor Colin, Ludovic DOS SANTOS, Kevin Scaman
- Root Mean Square Layer Normalization Biao Zhang, Rico Sennrich
- Universality in Learning from Linear Measurements Ehsan Abbasi, Fariborz Salehi, Babak Hassibi
- Planning in entropy-regularized Markov decision processes and games Jean-Bastien Grill, Omar Darwiche Domingues, Pierre Menard, Remi Munos, Michal Valko
- Exponentially convergent stochastic k-PCA without variance reduction Cheng Tang
- R2D2: Reliable and Repeatable Detector and Descriptor Jerome Revaud, Cesar De Souza, Martin Humenberger, Philippe Weinzaepfel
- Selective Sampling-based Scalable Sparse Subspace Clustering Shin Matsushima, Maria Brbic
- A General Framework for Symmetric Property Estimation Moses Charikar, Kirankumar Shiragur, Aaron Sidford
- Structured Variational Inference in Continuous Cox Process Models Virginia Aglietti, Edwin V. Bonilla, Theodoros Damoulas, Sally Cripps
- Generalization of Reinforcement Learners with Working and Episodic Memory Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin Buttimore, Charles Deck, Joel Z. Leibo, Charles Blundell
- Distribution Learning of a Random Spatial Field with a Location-Unaware Mobile Sensor Meera Pai, Animesh Kumar
- Hindsight Credit Assignment Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nicolas Heess, Hado P. van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, Remi Munos
- Efficient Identification in Linear Structural Causal Models with Instrumental Cutsets Daniel Kumor, Bryant Chen, Elias Bareinboim
- Kernelized Bayesian Softmax for Text Generation Ning Miao, Hao Zhou, Chengqi Zhao, Wenxian Shi, Lei Li
- When to Trust Your Model: Model-Based Policy Optimization Michael Janner, Justin Fu, Marvin Zhang, Sergey Levine
- Correlation Clustering with Adaptive Similarity Queries Marco Bressan, Nicolò Cesa-Bianchi, Andrea Paudice, Fabio Vitale
- Control What You Can: Intrinsically Motivated Task-Planning Agent Sebastian Blaes, Marin Vlastelica Pogančić, Jiajie Zhu, Georg Martius
- Selecting causal brain features with a single conditional independence test per feature Atalanti Mastakouri, Bernhard Schölkopf, Dominik Janzing
- Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh
- A Generic Acceleration Framework for Stochastic Composite Optimization Andrei Kulunchakov, Julien Mairal
- Beating SGD Saturation with Tail-Averaging and Minibatching Nicole Muecke, Gergely Neu, Lorenzo Rosasco
- Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond Arindam Banerjee, Qilong Gu, Vidyashankar Sivakumar, Steven Z. Wu
- Continuous-time Models for Stochastic Optimization Algorithms Antonio Orvieto, Aurelien Lucchi
- Curriculum-guided Hindsight Experience Replay Meng Fang, Tianyi Zhou, Yali Du, Lei Han, Zhengyou Zhang
- Implicit Semantic Data Augmentation for Deep Networks Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang, Cheng Wu
- MetaInit: Initializing learning by learning to initialize Yann N. Dauphin, Samuel Schoenholz
- Scalable Deep Generative Relational Model with High-Order Node Dependence Xuhui Fan, Bin Li, Caoyuan Li, Scott SIsson, Ling Chen
- Random Path Selection for Continual Learning Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan, Fahad Shahbaz Khan, Ling Shao
- Efficient Algorithms for Smooth Minimax Optimization Kiran K. Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh
- Shadowing Properties of Optimization Algorithms Antonio Orvieto, Aurelien Lucchi
- Causal Regularization Dominik Janzing
- Learning Hawkes Processes from a handful of events Farnood Salehi, William Trouleau, Matthias Grossglauser, Patrick Thiran
- Unsupervised Object Segmentation by Redrawing Mickaël Chen, Thierry Artières, Ludovic Denoyer
- Regret Bounds for Learning State Representations in Reinforcement Learning Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, Odalric-Ambrym Maillard
- Band-Limited Gaussian Processes: The Sinc Kernel Felipe Tobar
- Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, Massimiliano Pontil
- Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning Valerio Perrone, Huibin Shen
- Streaming Bayesian Inference for Crowdsourced Classification Edoardo Manino, Long Tran-Thanh, Nicholas Jennings
- Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation Ruibo Tu, Kun Zhang, Bo Bertilson, Hedvig Kjellstrom, Cheng Zhang
- Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs Jonas Kubilius, Martin Schrimpf, Ha Hong, Najib Majaj, Rishi Rajalingham, Elias Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L. Yamins, James J. DiCarlo
- k-Means Clustering of Lines for Big Data Yair Marom, Dan Feldman
- Random Projections and Sampling Algorithms for Clustering of High-Dimensional Polygonal Curves Stefan Meintrup, Alexander Munteanu, Dennis Rohde
- Recurrent Space-time Graph Neural Networks Andrei Nicolicioiu, Iulia Duta, Marius Leordeanu
- Uncertainty on Asynchronous Time Event Prediction Bertrand Charpentier, Marin Biloš, Stephan Günnemann
- Accurate, reliable and fast robustness evaluation Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, Matthias Bethge
- Sparse High-Dimensional Isotonic Regression David Gamarnik, Julia Gaudio
- Triad Constraints for Learning Causal Structure of Latent Variables Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, Kun Zhang
- On the Inductive Bias of Neural Tangent Kernels Alberto Bietti, Julien Mairal
- Cross-Domain Transferability of Adversarial Perturbations Muhammad Muzammal Naseer, Salman H. Khan, Muhammad Haris Khan, Fahad Shahbaz Khan, Fatih Porikli
- Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Venkatesh Saligrama, Harsha Vardhan Simhadri, Prateek Jain
- Kernel quadrature with DPPs Ayoub Belhadji, Rémi Bardenet, Pierre Chainais
- REM: From Structural Entropy to Community Structure Deception Yiwei Liu, Jiamou Liu, Zijian Zhang, Liehuang Zhu, Angsheng Li
- Sim2real transfer learning for 3D human pose estimation: motion to the rescue Carl Doersch, Andrew Zisserman
- Self-Supervised Deep Learning on Point Clouds by Reconstructing Space Bjarne Sievers, Jonathan Sauder
- Piecewise Strong Convexity of Neural Networks Tristan Milne
- Minimum Stein Discrepancy Estimators Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, Lester Mackey
- Fast and Furious Learning in Zero-Sum Games: Vanishing Regret with Non-Vanishing Step Sizes James Bailey, Georgios Piliouras
- Generalization Bounds for Neural Networks via Approximate Description Length Amit Daniely, Elad Granot
- Provably robust boosted decision stumps and trees against adversarial attacks Maksym Andriushchenko, Matthias Hein
- Convergence of Adversarial Training in Overparametrized Neural Networks Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, Jason D. Lee
- A Composable Specification Language for Reinforcement Learning Tasks Kishor Jothimurugan, Rajeev Alur, Osbert Bastani
- The Option Keyboard: Combining Skills in Reinforcement Learning Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel Toyama, Jonathan hunt, Shibl Mourad, David Silver, Doina Precup
- Unified Language Model Pre-training for Natural Language Understanding and Generation Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, Hsiao-Wuen Hon
- Learning to Correlate in Multi-Player General-Sum Sequential Games Andrea Celli, Alberto Marchesi, Tommaso Bianchi, Nicola Gatti
- Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match Amin Karbasi, Hamed Hassani, Aryan Mokhtari, Zebang Shen
- Generative Well-intentioned Networks Justin Cosentino, Jun Zhu
- Online-Within-Online Meta-Learning Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
- Learning step sizes for unfolded sparse coding Pierre Ablin, Thomas Moreau, Mathurin Massias, Alexandre Gramfort
- Biases for Emergent Communication in Multi-agent Reinforcement Learning Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazaridou, Thore Graepel
- Episodic Memory in Lifelong Language Learning Cyprien de Masson d'Autume, Sebastian Ruder, Lingpeng Kong, Dani Yogatama
- A Simple Baseline for Bayesian Uncertainty in Deep Learning Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson
- Communication-efficient Distributed SGD with Sketching Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir braverman, Ion Stoica, Raman Arora
- Modeling Conceptual Understanding in Image Reference Games Rodolfo Corona Rodriguez, Stephan Alaniz, Zeynep Akata
- Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights Maria Jahja, David Farrow, Roni Rosenfeld, Ryan J. Tibshirani
- Near Neighbor: Who is the Fairest of Them All? Sariel Har-Peled, Sepideh Mahabadi
- Outlier-robust estimation of a sparse linear model using \ell_1-penalized Huber's M-estimator Arnak Dalalyan, Philip Thompson
- Learning nonlinear level sets for dimensionality reduction in function approximation Guannan Zhang, Jiaxin Zhang, Jacob Hinkle
- Assessing Social and Intersectional Biases in Contextualized Word Representations Yi Chern Tan, L. Elisa Celis
- Online Convex Matrix Factorization with Representative Regions Jianhao Peng, Olgica Milenkovic, Abhishek Agarwal
- Self-supervised GAN: Analysis and Improvement with Multi-class Minimax Game Ngoc-Trung Tran, Viet-Hung Tran, Bao-Ngoc Nguyen, Linxiao Yang, Ngai-Man (Man) Cheung
- Extreme Classification in Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, Anshumali Shrivastava
- A Fourier Perspective on Model Robustness in Computer Vision Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, Justin Gilmer
- The continuous Bernoulli: fixing a pervasive error in variational autoencoders Gabriel Loaiza-Ganem, John P. Cunningham
- Privacy Amplification by Mixing and Diffusion Mechanisms Borja Balle, Gilles Barthe, Marco Gaboardi, Joseph Geumlek
- Variance Reduction in Bipartite Experiments through Correlation Clustering Jean Pouget-Abadie, Kevin Aydin, Warren Schudy, Kay Brodersen, Vahab Mirrokni
- Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning Mahmoud ("Mido") Assran, Joshua Romoff, Nicolas Ballas, Joelle Pineau, Mike Rabbat
- Metalearned Neural Memory Tsendsuren Munkhdalai, Alessandro Sordoni, TONG WANG, Adam Trischler
- Learning Multiple Markov Chains via Adaptive Allocation Mohammad Sadegh Talebi, Odalric-Ambrym Maillard
- Diffusion Improves Graph Learning Johannes Klicpera, Stefan Weißenberger, Stephan Günnemann
- Deep Random Splines for Point Process Intensity Estimation of Neural Population Data Gabriel Loaiza-Ganem, Sean Perkins, Karen Schroeder, Mark Churchland, John P. Cunningham
- Variational Bayes under Model Misspecification Yixin Wang, David Blei
- Global Convergence of Gradient Descent for Deep Linear Residual Networks Lei Wu, Qingcan Wang, Chao Ma
- On Differentially Private Graph Sparsification and Applications Raman Arora, Jalaj Upadhyay
- Manifold denoising by Nonlinear Robust Principal Component Analysis He Lyu, Ningyu Sha, Shuyang Qin, Ming Yan, Yuying Xie, Rongrong Wang
- Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes Junzhe Zhang, Elias Bareinboim
- ODE2VAE: Deep generative second order ODEs with Bayesian neural networks Cagatay Yildiz, Markus Heinonen, Harri Lahdesmaki
- Optimal Sampling and Clustering in the Stochastic Block Model Se-Young Yun, Alexandre Proutiere
- Recurrent Kernel Networks Dexiong Chen, Laurent Jacob, Julien Mairal
- Cold Case: The Lost MNIST Digits Chhavi Yadav, Leon Bottou
- Hierarchical Optimal Transport for Multimodal Distribution Alignment John Lee, Max Dabagia, Eva Dyer, Christopher Rozell
- Exploration via Hindsight Goal Generation Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, Jian Peng
- Shaping Belief States with Generative Environment Models for RL Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, Aaron van den Oord
- Globally Optimal Learning for Structured Elliptical Losses Yoav Wald, Nofar Noy, Gal Elidan, Ami Wiesel
- Object landmark discovery through unsupervised adaptation Enrique Sanchez, Georgios Tzimiropoulos
- Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering Biwei Huang, Kun Zhang, Pengtao Xie, Mingming Gong, Eric P. Xing, Clark Glymour
- Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks Amirmohammad Rooshenas, Dongxu Zhang, Gopal Sharma, Andrew McCallum
- Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions Ashia C. Wilson, Lester Mackey, Andre Wibisono
- RUDDER: Return Decomposition for Delayed Rewards Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, Sepp Hochreiter
- Graph Normalizing Flows Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky
- Explanations can be manipulated and geometry is to blame Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-Robert Müller, Pan Kessel
- Communication trade-offs for Local-SGD with large step size Aymeric Dieuleveut, Kumar Kshitij Patel
- Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie
- No-Regret Learning in Unknown Games with Correlated Payoffs Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
- Alleviating Label Switching with Optimal Transport Pierre Monteiller, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, Justin M. Solomon, Mikhail Yurochkin
- Paraphrase Generation with Latent Bag of Words Yao Fu, Yansong Feng, John P. Cunningham
- An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko, Sergey Yekhanin
- Compacting, Picking and Growing for Unforgetting Continual Learning Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, Chu-Song Chen
- Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems Asma Ghandeharioun, Judy Hanwen Shen, Natasha Jaques, Craig Ferguson, Noah Jones, Agata Lapedriza, Rosalind Picard
- A New Distribution on the Simplex with Auto-Encoding Applications Andrew Stirn, Tony Jebara, David Knowles
- AutoPrune: Automatic Network Pruning by Regularizing Auxiliary Parameters XIA XIAO, Zigeng Wang, Sanguthevar Rajasekaran
- A neurally plausible model learns successor representations in partially observable environments Eszter Vértes, Maneesh Sahani
- Learning about an exponential amount of conditional distributions Mohamed Belghazi, Maxime Oquab, David Lopez-Paz
- Towards modular and programmable architecture search Renato Negrinho, Matthew Gormley, Geoffrey J. Gordon, Darshan Patil, Nghia Le, Daniel Ferreira
- Towards Hardware-Aware Tractable Learning of Probabilistic Models Laura I. Galindez Olascoaga, Wannes Meert, Nimish Shah, Marian Verhelst, Guy Van den Broeck
- On Robustness to Adversarial Examples and Polynomial Optimization Pranjal Awasthi, Abhratanu Dutta, Aravindan Vijayaraghavan
- Rand-NSG: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, Rohan Kadekodi
- A Solvable High-Dimensional Model of GAN Chuang Wang, Hong Hu, Yue Lu
- Using Embeddings to Correct for Unobserved Confounding in Networks Victor Veitch, Yixin Wang, David Blei
- MonoForest framework for tree ensemble analysis Igor Kuralenok, Vasilii Ershov, Igor Labutin
- Bayesian Optimization under Heavy-tailed Payoffs Sayak Ray Chowdhury, Aditya Gopalan
- Combining Generative and Discriminative Models for Hybrid Inference Victor Garcia Satorras, Max Welling, Zeynep Akata
- A Graph Theoretic Additive Approximation of Optimal Transport Nathaniel Lahn, Deepika Mulchandani, Sharath Raghvendra
- Adversarial Robustness through Local Linearization Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet Kohli
- Sampled Softmax with Random Fourier Features Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X. Yu, Ananda Theertha Suresh, Sanjiv Kumar
- Semi-flat minima and saddle points by embedding neural networks to overparameterization Kenji Fukumizu, Shoichiro Yamaguchi, Yoh-ichi Mototake, Mirai Tanaka
- Learning Fairness in Multi-Agent Systems Jiechuan Jiang, Zongqing Lu
- Primal-Dual Block Generalized Frank-Wolfe Qi Lei, JIACHENG ZHUO, Constantine Caramanis, Inderjit S. Dhillon, Alexandros G. Dimakis
- GOT: An Optimal Transport framework for Graph comparison Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, Pascal Frossard
- On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks Sunil Thulasidasan, Gopinath Chennupati, Jeff A. Bilmes, Tanmoy Bhattacharya, Sarah Michalak
- Complexity of Highly Parallel Non-Smooth Convex Optimization Sebastien Bubeck, Qijia Jiang, Yin-Tat Lee, Yuanzhi Li, Aaron Sidford
- Inverting Deep Generative models, One layer at a time Qi Lei, Ajil Jalal, Inderjit S. Dhillon, Alexandros G. Dimakis
- Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization Viet Anh Nguyen, Soroosh Shafieezadeh Abadeh, Man-Chung Yue, Daniel Kuhn, Wolfram Wiesemann
- The Implicit Metropolis-Hastings Algorithm Kirill Neklyudov, Evgenii Egorov, Dmitry P. Vetrov
- An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints Mehmet Fatih Sahin, Armin eftekhari, Ahmet Alacaoglu, Fabian Latorre, Volkan Cevher
- Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann
- Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin, D. Sculley, Joshua Dillon, Jie Ren, Zachary Nado
- Accurate Layerwise Interpretable Competence Estimation Vickram Rajendran, William LeVine
- A New Perspective on Pool-Based Active Classification and False-Discovery Control Lalit Jain, Kevin G. Jamieson
- Defending Neural Backdoors via Generative Distribution Modeling Ximing Qiao, Yukun Yang, Hai Li
- Are Sixteen Heads Really Better than One? Paul Michel, Omer Levy, Graham Neubig
- Multi-resolution Multi-task Gaussian Processes Oliver Hamelijnck, Theodoros Damoulas, Kangrui Wang, Mark Girolami
- Variational Bayesian Optimal Experimental Design Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas Rainforth, Noah Goodman
- Universal Approximation of Input-Output Maps by Temporal Convolutional Nets Joshua Hanson, Maxim Raginsky
- Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes Matt Jordan, Justin Lewis, Alexandros G. Dimakis
- Reinforcement Learning with Convex Constraints Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, Robert E. Schapire
- User-Specified Local Differential Privacy in Unconstrained Adaptive Online Learning Dirk van der Hoeven
- Stochastic Bandits with Context Distributions Johannes Kirschner, Andreas Krause
- Inducing brain-relevant bias in natural language processing models Dan Schwartz, Mariya Toneva, Leila Wehbe
- Using a Logarithmic Mapping to Enable Lower Discount Factors in Reinforcement Learning Harm Van Seijen, Mehdi Fatemi, Arash Tavakoli
- Recovering Bandits Ciara Pike-Burke, Steffen Grunewalder
- Computing Linear Restrictions of Neural Networks Matthew Sotoudeh, Aditya V. Thakur
- Learning Positive Functions with Pseudo Mirror Descent Yingxiang Yang, Haoxiang Wang, Negar Kiyavash, Niao He
- Correlation Priors for Reinforcement Learning Bastian Alt, Adrian Šošić, Heinz Koeppl
- Fast, Provably convergent IRLS Algorithm for p-norm Linear Regression Deeksha Adil, Richard Peng, Sushant Sachdeva
- A Similarity-preserving Network Trained on Transformed Images Recapitulates Salient Features of the Fly Motion Detection Circuit Yanis Bahroun, Dmitri Chklovskii, Anirvan Sengupta
- Differentially Private Covariance Estimation Kareem Amin, Travis Dick, Alex Kulesza, Andres Munoz, Sergei Vassilvitskii
- Outlier Detection and Robust PCA Using a Convex Measure of Innovation Mostafa Rahmani, Ping Li
- Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems Robert Ness, Kaushal Paneri, Olga Vitek
- Are Disentangled Representations Helpful for Abstract Visual Reasoning? Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem
- PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi
- Stochastic Frank-Wolfe for Composite Convex Minimization Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher
- Constraint-based Causal Structure Learning with Consistent Separating Sets Honghao Li, Vincent Cabeli, Nadir Sella, Herve Isambert
- Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis David Clark, Jesse Livezey, Kristofer Bouchard
- Sample Efficient Active Learning of Causal Trees Kristjan Greenewald, Dmitriy Katz, Karthikeyan Shanmugam, Sara Magliacane, Murat Kocaoglu, Enric Boix Adsera, Guy Bresler
- Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, Junjie Yan
- Robust Attribution Regularization Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, Somesh Jha
- Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization Miika Aittala, Prafull Sharma, Lukas Murmann, Adam Yedidia, Gregory Wornell, Bill Freeman, Fredo Durand
- When to use parametric models in reinforcement learning? Hado P. van Hasselt, Matteo Hessel, John Aslanides
- General E(2)-Equivariant Steerable CNNs Maurice Weiler, Gabriele Cesa
- Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions Murat Kocaoglu, Amin Jaber, Karthikeyan Shanmugam, Elias Bareinboim
- Structure Learning with Side Information: Sample Complexity Saurabh Sihag, Ali Tajer
- Untangling in Invariant Speech Recognition Cory Stephenson, Jenelle Feather, Suchismita Padhy, Oguz Elibol, Hanlin Tang, Josh McDermott, SueYeon Chung
- Flexible information routing in neural populations through stochastic comodulation Caroline Haimerl, Cristina Savin, Eero Simoncelli
- Generalization Bounds in the Predict-then-Optimize Framework Othman El Balghiti, Adam Elmachtoub, Paul Grigas, Ambuj Tewari
- Categorized Bandits Matthieu Jedor, Vianney Perchet, Jonathan Louedec
- Worst-Case Regret Bounds for Exploration via Randomized Value Functions Daniel Russo
- Efficient characterization of electrically evoked responses for neural interfaces Nishal Shah, Sasidhar Madugula, Pawel Hottowy, Alexander Sher, Alan Litke, Liam Paninski, E.J. Chichilnisky
- Differentially Private Distributed Data Summarization under Covariate Shift Kanthi Sarpatwar, Karthikeyan Shanmugam, Venkata Sitaramagiridharganesh Ganapavarapu, Ashish Jagmohan, Roman Vaculin
- Hamiltonian descent for composite objectives Brendan O'Donoghue, Chris J. Maddison
- Implicit Regularization of Accelerated Methods in Hilbert Spaces Nicolò Pagliana, Lorenzo Rosasco
- Non-Asymptotic Pure Exploration by Solving Games Rémy Degenne, Wouter M. Koolen, Pierre Ménard
- Implicit Posterior Variational Inference for Deep Gaussian Processes Haibin YU, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, Zhongxiang Dai
- Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces Benyamin Allahgholizadeh Haghi, Spencer Kellis, Sahil Shah, Maitreyi Ashok, Luke Bashford, Daniel Kramer, Brian Lee, Charles Liu, Richard Andersen, Azita Emami
- Censored Semi-Bandits: A Framework for Resource Allocation with Censored Feedback Arun Verma, Manjesh Hanawal, Arun Rajkumar, Raman Sankaran
- Cormorant: Covariant Molecular Neural Networks Brandon Anderson, Truong Son Hy, Risi Kondor
- Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness Andrey Malinin, Mark Gales
- Reflection Separation using a Pair of Unpolarized and Polarized Images Youwei Lyu, Zhaopeng Cui, Si Li, Marc Pollefeys, Boxin Shi
- Policy Poisoning in Batch Reinforcement Learning and Control Yuzhe Ma, Xuezhou Zhang, Wen Sun, Jerry Zhu
- Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees Alix LHERITIER, Frederic Cazals
- Pure Exploration with Multiple Correct Answers Rémy Degenne, Wouter M. Koolen
- Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, Sanjeev Arora
- On the Fairness of Disentangled Representations Francesco Locatello, Gabriele Abbati, Thomas Rainforth, Stefan Bauer, Bernhard Schölkopf, Olivier Bachem
- Compiler Auto-Vectorization with Imitation Learning Charith Mendis, Cambridge Yang, Yewen Pu, Dr.Saman Amarasinghe, Michael Carbin
- A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation Runzhe Yang, Xingyuan Sun, Karthik Narasimhan
- Exact Gaussian Processes on a Million Data Points Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q. Weinberger, Andrew Gordon Wilson
- Bayesian Layers: A Module for Neural Network Uncertainty Dustin Tran, Mike Dusenberry, Mark van der Wilk, Danijar Hafner
- Learning Compositional Neural Programs with Recursive Tree Search and Planning Thomas PIERROT, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas
- Nonparametric Contextual Bandits in Metric Spaces with Unknown Metric Nirandika Wanigasekara, Christina Yu
- Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations Debraj Basu, Deepesh Data, Can Karakus, Suhas Diggavi
- Likelihood Ratios for Out-of-Distribution Detection Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, Balaji Lakshminarayanan
- Discrete Flows: Invertible Generative Models of Discrete Data Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, Ben Poole
- A Self Validation Network for Object-Level Human Attention Estimation Zehua Zhang, Chen Yu, David Crandall
- Model Selection for Contextual Bandits Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo
- Sliced Gromov-Wasserstein Vayer Titouan, Rémi Flamary, Nicolas Courty, Romain Tavenard, Laetitia Chapel
- Towards Practical Alternating Least-Squares for CCA Zhiqiang Xu, Ping Li
- Deep Leakage from Gradients Ligeng Zhu, Zhijian Liu, Song Han
- Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness Fanny Yang, Zuowen Wang, Christina Heinze-Deml
- Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks Spencer Frei, Yuan Cao, Quanquan Gu
- Value Function in Frequency Domain and the Characteristic Value Iteration Algorithm Amir-massoud Farahmand
- Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E. Turner, José Miguel Hernández-Lobato, Cheng Zhang
- Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors Gauri Jagatap, Chinmay Hegde
- Planning with Goal-Conditioned Policies Soroush Nasiriany, Vitchyr Pong, Steven Lin, Sergey Levine
- Don't take it lightly: Phasing optical random projections with unknown operators Sidharth Gupta, Remi Gribonval, Laurent Daudet, Ivan Dokmanić
- Generating Diverse High-Fidelity Images with VQ-VAE-2 Ali Razavi, Aaron van den Oord, Oriol Vinyals
- Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs Pedro Mercado, Francesco Tudisco, Matthias Hein
- Online Optimal Control with Linear Dynamics and Predictions: Algorithms and Regret Analysis Yingying Li, Xin Chen, Na Li
- Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption Wei Ma, George H. Chen
- MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville
- Offline Contextual Bandits with High Probability Fairness Guarantees Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun, Emma Brunskill, Philip S. Thomas
- Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn
- Semantic-Guided Multi-Attention Localization for Zero-Shot Learning Yizhe Zhu, Jianwen Xie, Zhiqiang Tang, Xi Peng, Ahmed Elgammal
- Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain) Mariya Toneva, Leila Wehbe
- Function-Space Distributions over Kernels Gregory Benton, Wesley J. Maddox, Jayson Salkey, Julio Albinati, Andrew Gordon Wilson
- The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares Rong Ge, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli
- Compositional Plan Vectors Coline Devin, Daniel Geng, Pieter Abbeel, Trevor Darrell, Sergey Levine
- Locally Private Learning without Interaction Requires Separation Amit Daniely, Vitaly Feldman
- Robust Bi-Tempered Logistic Loss Based on Bregman Divergences Ehsan Amid, Manfred K. K. Warmuth, Rohan Anil, Tomer Koren
- Computational Separations between Sampling and Optimization Kunal Talwar
- Surfing: Iterative Optimization Over Incrementally Trained Deep Networks Ganlin Song, Zhou Fan, John Lafferty
- Learning to Optimize in Swarms Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen
- On Human-Aligned Risk Minimization Liu Leqi, Adarsh Prasad, Pradeep K. Ravikumar
- Semi-Parametric Efficient Policy Learning with Continuous Actions Victor Chernozhukov, Mert Demirer, Greg Lewis, Vasilis Syrgkanis
- Multi-task Learning for Aggregated Data using Gaussian Processes Fariba Yousefi, Michael T. Smith, Mauricio Álvarez
- Minimal Variance Sampling in Stochastic Gradient Boosting Bulat Ibragimov, Gleb Gusev
- Beyond the Single Neuron Convex Barrier for Neural Network Certification Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin Vechev
- An Algorithm to Learn Polytree Networks with Hidden Nodes Firoozeh Sepehr, Donatello Materassi
- Efficiently Learning Fourier Sparse Set Functions Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, Andreas Krause
- Projected Stein Variational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions Peng Chen, Keyi Wu, Joshua Chen, Tom O'Leary-Roseberry, Omar Ghattas
- Invariance and identifiability issues for word embeddings Rachel Carrington, Karthik Bharath, Simon Preston
- Generalization Error Analysis of Quantized Compressive Learning Xiaoyun Li, Ping Li
- Multi-Criteria Dimensionality Reduction with Applications to Fairness Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie H. Morgenstern, Santosh Vempala
- Efficient Rematerialization for Deep Networks Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, Joshua Wang
- Mo' States Mo' Problems: Emergency Stop Mechanisms from Observation Samuel Ainsworth, Matt Barnes, Siddhartha Srinivasa
- Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis
- Understanding Sparse JL for Feature Hashing Meena Jagadeesan
- Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen
- Flexible Modeling of Diversity with Strongly Log-Concave Distributions Joshua Robinson, Suvrit Sra, Stefanie Jegelka
- Momentum-Based Variance Reduction in Non-Convex SGD Ashok Cutkosky, Francesco Orabona
- Search on the Replay Buffer: Bridging Planning and Reinforcement Learning Ben Eysenbach, Russ R. Salakhutdinov, Sergey Levine
- Can Unconditional Language Models Recover Arbitrary Sentences? Nishant Subramani, Samuel Bowman, Kyunghyun Cho
- Group Retention when Using Machine Learning in Sequential Decision Making: the Interplay between User Dynamics and Fairness Xueru Zhang, Mohammadmahdi Khaliligarekani, Cem Tekin, mingyan liu
- Faster width-dependent algorithm for mixed packing and covering LPs Digvijay Boob, Saurabh Sawlani, Di Wang
- Flattening a Hierarchical Clustering through Active Learning Fabio Vitale, Anand Rajagopalan, Claudio Gentile
- DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging Matthieu SIMEONI, Sepand Kashani, Paul Hurley, Martin Vetterli
- Certifying Geometric Robustness of Neural Networks Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin Vechev
- Goal-conditioned Imitation Learning Yiming Ding, Carlos Florensa, Pieter Abbeel, Mariano Phielipp
- Robust exploration in linear quadratic reinforcement learning Jack Umenberger, Mina Ferizbegovic, Thomas B. Schön, Håkan Hjalmarsson
- DRUM: End-To-End Differentiable Rule Mining On Knowledge Graphs Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, Daisy Zhe Wang
- Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration Kwang-Sung Jun, Ashok Cutkosky, Francesco Orabona
- Input-Output Equivalence of Unitary and Contractive RNNs Melikasadat Emami, Mojtaba Sahraee Ardakan, Sundeep Rangan, Alyson K. Fletcher
- Hamiltonian Neural Networks Samuel Greydanus, Misko Dzamba, Jason Yosinski
- Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B. Grosse, Joern-Henrik Jacobsen
- Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks Dina Obeid, Hugo Ramambason, Cengiz Pehlevan
- Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology Nima Dehmamy, Albert-Laszlo Barabasi, Rose Yu
- Multiple Futures Prediction Charlie Tang, Russ R. Salakhutdinov
- Explicitly disentangling image content from translation and rotation with spatial-VAE Tristan Bepler, Ellen Zhong, Kotaro Kelley, Edward Brignole, Bonnie Berger
- Power analysis of knockoff filters for correlated designs Jingbo Liu, Philippe Rigollet
- A Kernel Loss for Solving the Bellman Equation Yihao Feng, Lihong Li, Qiang Liu
- Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing Jonas W. Mueller, Vasilis Syrgkanis, Matt Taddy
- Differential Privacy Has Disparate Impact on Model Accuracy Eugene Bagdasaryan, Omid Poursaeed, Vitaly Shmatikov
- Riemannian batch normalization for SPD neural networks Daniel Brooks, Olivier Schwander, Frederic Barbaresco, Jean-Yves Schneider, Matthieu Cord
- Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity Aria Wang, Michael Tarr, Leila Wehbe
- Stacked Capsule Autoencoders Adam Kosiorek, Sara Sabour, Yee Whye Teh, Geoffrey E. Hinton
- Learning Reward Machines for Partially Observable Reinforcement Learning Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, Sheila McIlraith
- Learning Representations by Maximizing Mutual Information Across Views Philip Bachman, R Devon Hjelm, William Buchwalter
- Amortized Bethe Free Energy Minimization for Learning MRFs Sam Wiseman, Yoon Kim
- Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity Chulhee Yun, Suvrit Sra, Ali Jadbabaie
- Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks Aaron Voelker, Ivana Kajić, Chris Eliasmith
- Exact Combinatorial Optimization with Graph Convolutional Neural Networks Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, Andrea Lodi
- Fast structure learning with modular regularization Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan
- Wasserstein Dependency Measure for Representation Learning Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron van den Oord, Sergey Levine, Pierre Sermanet
- TAB-VCR: Tags and Attributes based VCR Baselines Jingxiang Lin, Unnat Jain, Alexander Schwing
- Universality and individuality in neural dynamics across large populations of recurrent networks Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, David Sussillo
- End-to-End Learning on 3D Protein Structure for Interface Prediction Raphael Townshend, Rishi Bedi, Patricia Suriana, Ron Dror
- A Family of Robust Stochastic Operators for Reinforcement Learning Yingdong Lu, Mark Squillante, Chai Wah Wu
- Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, Dawn Song
- Inherent Tradeoffs in Learning Fair Representations Han Zhao, Geoff Gordon
- Are deep ResNets provably better than linear predictors? Chulhee Yun, Suvrit Sra, Ali Jadbabaie
- Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, David Sussillo
- BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos Eleanor Batty, Matthew Whiteway, Shreya Saxena, Dan Biderman, Taiga Abe, Simon Musall, Winthrop Gillis, Jeffrey Markowitz, Anne Churchland, John P. Cunningham, Sandeep R. Datta, Scott Linderman, Liam Paninski
- Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models Yuge Shi, Siddharth N, Brooks Paige, Philip Torr
- Gradient-based Adaptive Markov Chain Monte Carlo Michalis Titsias, Petros Dellaportas
- On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer
- Imitation-Projected Programmatic Reinforcement Learning Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri
- Learning Data Manipulation for Augmentation and Weighting Zhiting Hu, Bowen Tan, Russ R. Salakhutdinov, Tom M. Mitchell, Eric P. Xing
- Exploring Algorithmic Fairness in Robust Graph Covering Problems Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav, Milind Tambe
- Abstraction based Output Range Analysis for Neural Networks Pavithra Prabhakar, Zahra Rahimi Afzal
- Space and Time Efficient Kernel Density Estimation in High Dimensions Arturs Backurs, Piotr Indyk, Tal Wagner
- PIDForest: Anomaly Detection via Partial Identification Parikshit Gopalan, Vatsal Sharan, Udi Wieder
- Generative Models for Graph-Based Protein Design John Ingraham, Vikas Garg, Regina Barzilay, Tommi Jaakkola
- The Geometry of Deep Networks: Power Diagram Subdivision Randall Balestriero, Romain Cosentino, Behnaam Aazhang, Richard Baraniuk
- Approximate Feature Collisions in Neural Nets Ke Li, Tianhao Zhang, Jitendra Malik
- Ease-of-Teaching and Language Structure from Emergent Communication Fushan Li, Michael Bowling
- Generalization in multitask deep neural classifiers: a statistical physics approach Anthony Ndirango, Tyler Lee
- Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation Viet Anh Nguyen, Soroosh Shafieezadeh Abadeh, Man-Chung Yue, Daniel Kuhn, Wolfram Wiesemann
- On Relating Explanations and Adversarial Examples Alexey Ignatiev, Nina Narodytska, Joao Marques-Silva
- On the equivalence between graph isomorphism testing and function approximation with GNNs Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna
- Surround Modulation: A Bio-inspired Connectivity Structure for Convolutional Neural Networks Hosein Hasani, Mahdieh Soleymani, Hamid Aghajan
- Self-attention with Functional Time Representation Learning Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan
- Re-randomized Densification for One Permutation Hashing and Bin-wise Consistent Weighted Sampling Ping Li, Xiaoyun Li, Cun-Hui Zhang
- Enabling hyperparameter optimization in sequential autoencoders for spiking neural data Mohammad Reza Keshtkaran, Chethan Pandarinath
- Mixtape: Breaking the Softmax Bottleneck Efficiently Zhilin Yang, Thang Luong, Russ R. Salakhutdinov, Quoc V. Le