Advances in Neural Information Processing Systems 28 (NIPS 2015)
The papers below appear in Advances in Neural Information Processing Systems 28 edited by C. Cortes and N.D. Lawrence and D.D. Lee and M. Sugiyama and R. Garnett.They are proceedings from the conference, "Neural Information Processing Systems 2015."
- Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing Nihar Bhadresh Shah, Denny Zhou
- Learning with Symmetric Label Noise: The Importance of Being Unhinged Brendan van Rooyen, Aditya Menon, Robert C. Williamson
- Algorithmic Stability and Uniform Generalization Ibrahim M. Alabdulmohsin
- Adaptive Low-Complexity Sequential Inference for Dirichlet Process Mixture Models Theodoros Tsiligkaridis, Theodoros Tsiligkaridis, Keith Forsythe
- Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling Xiaocheng Shang, Zhanxing Zhu, Benedict Leimkuhler, Amos J. Storkey
- Robust Portfolio Optimization Huitong Qiu, Fang Han, Han Liu, Brian Caffo
- Logarithmic Time Online Multiclass prediction Anna E. Choromanska, John Langford
- Planar Ultrametrics for Image Segmentation Julian E. Yarkony, Charless Fowlkes
- Expressing an Image Stream with a Sequence of Natural Sentences Cesc C. Park, Gunhee Kim
- Parallel Correlation Clustering on Big Graphs Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, Michael I. Jordan
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
- Space-Time Local Embeddings Ke Sun, Jun Wang, Alexandros Kalousis, Stephane Marchand-Maillet
- A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements Qinqing Zheng, John Lafferty
- Smooth Interactive Submodular Set Cover Bryan D. He, Yisong Yue
- Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning Jiajun Wu, Ilker Yildirim, Joseph J. Lim, Bill Freeman, Josh Tenenbaum
- On the Pseudo-Dimension of Nearly Optimal Auctions Jamie H. Morgenstern, Tim Roughgarden
- Unlocking neural population non-stationarities using hierarchical dynamics models Mijung Park, Gergo Bohner, Jakob H. Macke
- Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) Mijung Park, Wittawat Jitkrittum, Ahmad Qamar, Zoltan Szabo, Lars Buesing, Maneesh Sahani
- Color Constancy by Learning to Predict Chromaticity from Luminance Ayan Chakrabarti
- Fast and Accurate Inference of Plackett–Luce Models Lucas Maystre, Matthias Grossglauser
- Probabilistic Line Searches for Stochastic Optimization Maren Mahsereci, Philipp Hennig
- Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets Armand Joulin, Tomas Mikolov
- Where are they looking? Adria Recasens, Aditya Khosla, Carl Vondrick, Antonio Torralba
- The Pareto Regret Frontier for Bandits Tor Lattimore
- On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors Andrea Montanari, Daniel Reichman, Ofer Zeitouni
- Measuring Sample Quality with Stein's Method Jackson Gorham, Lester Mackey
- Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution Yan Huang, Wei Wang, Liang Wang
- Bounding errors of Expectation-Propagation Guillaume P. Dehaene, Simon Barthelmé
- A fast, universal algorithm to learn parametric nonlinear embeddings Miguel A. Carreira-Perpinan, Max Vladymyrov
- Texture Synthesis Using Convolutional Neural Networks Leon Gatys, Alexander S. Ecker, Matthias Bethge
- Extending Gossip Algorithms to Distributed Estimation of U-statistics Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon
- Streaming, Distributed Variational Inference for Bayesian Nonparametrics Trevor Campbell, Julian Straub, John W. Fisher III, Jonathan P. How
- Learning visual biases from human imagination Carl Vondrick, Hamed Pirsiavash, Aude Oliva, Antonio Torralba
- Smooth and Strong: MAP Inference with Linear Convergence Ofer Meshi, Mehrdad Mahdavi, Alex Schwing
- Copeland Dueling Bandits Masrour Zoghi, Zohar S. Karnin, Shimon Whiteson, Maarten de Rijke
- Optimal Ridge Detection using Coverage Risk Yen-Chi Chen, Christopher R. Genovese, Shirley Ho, Larry Wasserman
- Top-k Multiclass SVM Maksim Lapin, Matthias Hein, Bernt Schiele
- Policy Evaluation Using the Ω-Return Philip S. Thomas, Scott Niekum, Georgios Theocharous, George Konidaris
- Orthogonal NMF through Subspace Exploration Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G. Dimakis
- Stochastic Online Greedy Learning with Semi-bandit Feedbacks Tian Lin, Jian Li, Wei Chen
- Deeply Learning the Messages in Message Passing Inference Guosheng Lin, Chunhua Shen, Ian Reid, Anton van den Hengel
- Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring David Kappel, Stefan Habenschuss, Robert Legenstein, Wolfgang Maass
- Accelerated Proximal Gradient Methods for Nonconvex Programming Huan Li, Zhouchen Lin
- Approximating Sparse PCA from Incomplete Data ABHISEK KUNDU, Petros Drineas, Malik Magdon-Ismail
- Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, james m. robins
- Column Selection via Adaptive Sampling Saurabh Paul, Malik Magdon-Ismail, Petros Drineas
- HONOR: Hybrid Optimization for NOn-convex Regularized problems Pinghua Gong, Jieping Ye
- 3D Object Proposals for Accurate Object Class Detection Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G. Berneshawi, Huimin Ma, Sanja Fidler, Raquel Urtasun
- Algorithms with Logarithmic or Sublinear Regret for Constrained Contextual Bandits Huasen Wu, R. Srikant, Xin Liu, Chong Jiang
- Tensorizing Neural Networks Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, Dmitry P. Vetrov
- Parallelizing MCMC with Random Partition Trees Xiangyu Wang, Fangjian Guo, Katherine A. Heller, David B. Dunson
- A Reduced-Dimension fMRI Shared Response Model Po-Hsuan (Cameron) Chen, Janice Chen, Yaara Yeshurun, Uri Hasson, James Haxby, Peter J. Ramadge
- Spectral Learning of Large Structured HMMs for Comparative Epigenomics Chicheng Zhang, Jimin Song, Kamalika Chaudhuri, Kevin Chen
- Individual Planning in Infinite-Horizon Multiagent Settings: Inference, Structure and Scalability Xia Qu, Prashant Doshi
- Estimating Mixture Models via Mixtures of Polynomials Sida Wang, Arun Tejasvi Chaganty, Percy S. Liang
- On the Global Linear Convergence of Frank-Wolfe Optimization Variants Simon Lacoste-Julien, Martin Jaggi
- Deep Knowledge Tracing Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J. Guibas, Jascha Sohl-Dickstein
- Rethinking LDA: Moment Matching for Discrete ICA Anastasia Podosinnikova, Francis Bach, Simon Lacoste-Julien
- Efficient Compressive Phase Retrieval with Constrained Sensing Vectors Sohail Bahmani, Justin Romberg
- Barrier Frank-Wolfe for Marginal Inference Rahul G. Krishnan, Simon Lacoste-Julien, David Sontag
- Learning Theory and Algorithms for Forecasting Non-stationary Time Series Vitaly Kuznetsov, Mehryar Mohri
- Compressive spectral embedding: sidestepping the SVD Dinesh Ramasamy, Upamanyu Madhow
- A Nonconvex Optimization Framework for Low Rank Matrix Estimation Tuo Zhao, Zhaoran Wang, Han Liu
- Automatic Variational Inference in Stan Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, David Blei
- Attention-Based Models for Speech Recognition Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio
- Closed-form Estimators for High-dimensional Generalized Linear Models Eunho Yang, Aurelie C. Lozano, Pradeep K. Ravikumar
- Online F-Measure Optimization Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, Eyke Hüllermeier
- Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, Eyke Hüllermeier
- M-Best-Diverse Labelings for Submodular Energies and Beyond Alexander Kirillov, Dmytro Shlezinger, Dmitry P. Vetrov, Carsten Rother, Bogdan Savchynskyy
- Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number Janne H. Korhonen, Pekka Parviainen
- Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring Gunwoong Park, Garvesh Raskutti
- Training Restricted Boltzmann Machine via the Thouless-Anderson-Palmer free energy Marylou Gabrie, Eric W. Tramel, Florent Krzakala
- Character-level Convolutional Networks for Text Classification Xiang Zhang, Junbo Zhao, Yann LeCun
- Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis Ehsan Adeli-Mosabbeb, Kim-Han Thung, Le An, Feng Shi, Dinggang Shen
- Black-box optimization of noisy functions with unknown smoothness Jean-Bastien grill, Michal Valko, Remi Munos, Remi Munos
- Recovering Communities in the General Stochastic Block Model Without Knowing the Parameters Emmanuel Abbe, Colin Sandon
- Deep learning with Elastic Averaging SGD Sixin Zhang, Anna E. Choromanska, Yann LeCun
- Monotone k-Submodular Function Maximization with Size Constraints Naoto Ohsaka, Yuichi Yoshida
- Active Learning from Weak and Strong Labelers Chicheng Zhang, Kamalika Chaudhuri
- On the Optimality of Classifier Chain for Multi-label Classification Weiwei Liu, Ivor Tsang
- Robust Regression via Hard Thresholding Kush Bhatia, Prateek Jain, Purushottam Kar
- Sparse Local Embeddings for Extreme Multi-label Classification Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, Prateek Jain
- Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems Yuxin Chen, Emmanuel Candes
- A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure Peter Schulam, Suchi Saria
- Subspace Clustering with Irrelevant Features via Robust Dantzig Selector Chao Qu, Huan Xu
- Sparse PCA via Bipartite Matchings Megasthenis Asteris, Dimitris Papailiopoulos, Anastasios Kyrillidis, Alexandros G. Dimakis
- Fast Randomized Kernel Ridge Regression with Statistical Guarantees Ahmed Alaoui, Michael W. Mahoney
- Online Learning for Adversaries with Memory: Price of Past Mistakes Oren Anava, Elad Hazan, Shie Mannor
- Convolutional spike-triggered covariance analysis for neural subunit models Anqi Wu, Il Memming Park, Jonathan W. Pillow
- Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, Wang-chun WOO
- GAP Safe screening rules for sparse multi-task and multi-class models Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon
- Empirical Localization of Homogeneous Divergences on Discrete Sample Spaces Takashi Takenouchi, Takafumi Kanamori
- Statistical Model Criticism using Kernel Two Sample Tests James R. Lloyd, Zoubin Ghahramani
- Precision-Recall-Gain Curves: PR Analysis Done Right Peter Flach, Meelis Kull
- A Generalization of Submodular Cover via the Diminishing Return Property on the Integer Lattice Tasuku Soma, Yuichi Yoshida
- Bidirectional Recurrent Neural Networks as Generative Models Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo Kärkkäinen, Akos Vetek, Juha T. Karhunen
- Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling Zheng Qu, Peter Richtarik, Tong Zhang
- Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets Justin Domke
- Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks Minhyung Cho, Chandra Dhir, Jaehyung Lee
- Large-scale probabilistic predictors with and without guarantees of validity Vladimir Vovk, Ivan Petej, Valentina Fedorova
- Shepard Convolutional Neural Networks Jimmy SJ Ren, Li Xu, Qiong Yan, Wenxiu Sun
- Matrix Manifold Optimization for Gaussian Mixtures Reshad Hosseini, Suvrit Sra
- Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding Rie Johnson, Tong Zhang
- Parallel Recursive Best-First AND/OR Search for Exact MAP Inference in Graphical Models Akihiro Kishimoto, Radu Marinescu, Adi Botea
- Convolutional Neural Networks with Intra-Layer Recurrent Connections for Scene Labeling Ming Liang, Xiaolin Hu, Bo Zhang
- Bounding the Cost of Search-Based Lifted Inference David B. Smith, Vibhav G. Gogate
- Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltan Szabo, Arthur Gretton
- Linear Multi-Resource Allocation with Semi-Bandit Feedback Tor Lattimore, Koby Crammer, Csaba Szepesvari
- Unsupervised Learning by Program Synthesis Kevin Ellis, Armando Solar-Lezama, Josh Tenenbaum
- Enforcing balance allows local supervised learning in spiking recurrent networks Ralph Bourdoukan, Sophie Denève
- Fast and Guaranteed Tensor Decomposition via Sketching Yining Wang, Hsiao-Yu Tung, Alex J. Smola, Anima Anandkumar
- Differentially private subspace clustering Yining Wang, Yu-Xiang Wang, Aarti Singh
- Predtron: A Family of Online Algorithms for General Prediction Problems Prateek Jain, Nagarajan Natarajan, Ambuj Tewari
- Weighted Theta Functions and Embeddings with Applications to Max-Cut, Clustering and Summarization Fredrik D. Johansson, Ankani Chattoraj, Chiranjib Bhattacharyya, Devdatt Dubhashi
- SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk Guillaume Papa, Stéphan Clémençon, Aurélien Bellet
- On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs Wei Cao, Jian Li, Yufei Tao, Zhize Li
- The Brain Uses Reliability of Stimulus Information when Making Perceptual Decisions Sebastian Bitzer, Stefan Kiebel
- Fast Classification Rates for High-dimensional Gaussian Generative Models Tianyang Li, Adarsh Prasad, Pradeep K. Ravikumar
- Fast Distributed k-Center Clustering with Outliers on Massive Data Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, Benjamin Moseley
- Human Memory Search as Initial-Visit Emitting Random Walk Kwang-Sung Jun, Xiaojin Zhu, Timothy T. Rogers, Zhuoran Yang, ming yuan
- Non-convex Statistical Optimization for Sparse Tensor Graphical Model Wei Sun, Zhaoran Wang, Han Liu, Guang Cheng
- Convergence Rates of Active Learning for Maximum Likelihood Estimation Kamalika Chaudhuri, Sham M. Kakade, Praneeth Netrapalli, Sujay Sanghavi
- Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis Jimei Yang, Scott E. Reed, Ming-Hsuan Yang, Honglak Lee
- Efficient Exact Gradient Update for training Deep Networks with Very Large Sparse Targets Pascal Vincent, Alexandre de Brébisson, Xavier Bouthillier
- Backpropagation for Energy-Efficient Neuromorphic Computing Steve K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, Dharmendra S. Modha
- Alternating Minimization for Regression Problems with Vector-valued Outputs Prateek Jain, Ambuj Tewari
- Learning both Weights and Connections for Efficient Neural Network Song Han, Jeff Pool, John Tran, William Dally
- Optimal Rates for Random Fourier Features Bharath Sriperumbudur, Zoltan Szabo
- The Population Posterior and Bayesian Modeling on Streams James McInerney, Rajesh Ranganath, David Blei
- Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees François-Xavier Briol, Chris Oates, Mark Girolami, Michael A. Osborne
- Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer
- Unified View of Matrix Completion under General Structural Constraints Suriya Gunasekar, Arindam Banerjee, Joydeep Ghosh
- Efficient Output Kernel Learning for Multiple Tasks Pratik Jawanpuria, Maksim Lapin, Matthias Hein, Bernt Schiele
- Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models Michael C. Hughes, William T. Stephenson, Erik Sudderth
- Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan
- Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma Murat A. Erdogdu
- Practical and Optimal LSH for Angular Distance Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, Ludwig Schmidt
- Learning to Linearize Under Uncertainty Ross Goroshin, Michael F. Mathieu, Yann LeCun
- Finite-Time Analysis of Projected Langevin Monte Carlo Sebastien Bubeck, Ronen Eldan, Joseph Lehec
- Deep Visual Analogy-Making Scott E. Reed, Yi Zhang, Yuting Zhang, Honglak Lee
- Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation Alaa Saade, Florent Krzakala, Lenka Zdeborová
- Online Learning with Adversarial Delays Kent Quanrud, Daniel Khashabi
- Multi-Layer Feature Reduction for Tree Structured Group Lasso via Hierarchical Projection Jie Wang, Jieping Ye
- Minimum Weight Perfect Matching via Blossom Belief Propagation Sung-Soo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin
- Efficient Thompson Sampling for Online Matrix-Factorization Recommendation Jaya Kawale, Hung H. Bui, Branislav Kveton, Long Tran-Thanh, Sanjay Chawla
- Improved Iteration Complexity Bounds of Cyclic Block Coordinate Descent for Convex Problems Ruoyu Sun, Mingyi Hong
- Lifted Symmetry Detection and Breaking for MAP Inference Timothy Kopp, Parag Singla, Henry Kautz
- Evaluating the statistical significance of biclusters Jason D. Lee, Yuekai Sun, Jonathan E. Taylor
- Discriminative Robust Transformation Learning Jiaji Huang, Qiang Qiu, Guillermo Sapiro, Robert Calderbank
- Bandits with Unobserved Confounders: A Causal Approach Elias Bareinboim, Andrew Forney, Judea Pearl
- Scalable Semi-Supervised Aggregation of Classifiers Akshay Balsubramani, Yoav Freund
- Online Learning with Gaussian Payoffs and Side Observations Yifan Wu, András György, Csaba Szepesvari
- Private Graphon Estimation for Sparse Graphs Christian Borgs, Jennifer Chayes, Adam Smith
- SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals Qing Sun, Dhruv Batra
- Fast Second Order Stochastic Backpropagation for Variational Inference Kai Fan, Ziteng Wang, Jeff Beck, James Kwok, Katherine A. Heller
- Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition Cameron Musco, Christopher Musco
- Cross-Domain Matching for Bag-of-Words Data via Kernel Embeddings of Latent Distributions Yuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada, Takeshi Yamada
- Scalable Inference for Gaussian Process Models with Black-Box Likelihoods Amir Dezfouli, Edwin V. Bonilla
- Fast Bidirectional Probability Estimation in Markov Models Siddhartha Banerjee, Peter Lofgren
- Probabilistic Variational Bounds for Graphical Models Qiang Liu, John W. Fisher III, Alexander T. Ihler
- Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes Ryan J. Giordano, Tamara Broderick, Michael I. Jordan
- Combinatorial Cascading Bandits Branislav Kveton, Zheng Wen, Azin Ashkan, Csaba Szepesvari
- Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path Daniel J. Hsu, Aryeh Kontorovich, Csaba Szepesvari
- Policy Gradient for Coherent Risk Measures Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor
- Fast Rates for Exp-concave Empirical Risk Minimization Tomer Koren, Kfir Levy
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Emily L. Denton, Soumith Chintala, arthur szlam, Rob Fergus
- Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Seunghoon Hong, Hyeonwoo Noh, Bohyung Han
- Equilibrated adaptive learning rates for non-convex optimization Yann Dauphin, Harm de Vries, Yoshua Bengio
- BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions Dominik Rothenhäusler, Christina Heinze, Jonas Peters, Nicolai Meinshausen
- Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach Yinlam Chow, Aviv Tamar, Shie Mannor, Marco Pavone
- Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care Sorathan Chaturapruek, John C. Duchi, Christopher Ré
- Lifelong Learning with Non-i.i.d. Tasks Anastasia Pentina, Christoph H. Lampert
- Optimal Linear Estimation under Unknown Nonlinear Transform Xinyang Yi, Zhaoran Wang, Constantine Caramanis, Han Liu
- Learning with Group Invariant Features: A Kernel Perspective. Youssef Mroueh, Stephen Voinea, Tomaso A. Poggio
- Regularized EM Algorithms: A Unified Framework and Statistical Guarantees Xinyang Yi, Constantine Caramanis
- Distributionally Robust Logistic Regression Soroosh Shafieezadeh-Abadeh, Peyman Mohajerin Esfahani, Daniel Kuhn
- Adaptive Stochastic Optimization: From Sets to Paths Zhan Wei Lim, David Hsu, Wee Sun Lee
- Beyond Convexity: Stochastic Quasi-Convex Optimization Elad Hazan, Kfir Levy, Shai Shalev-Shwartz
- A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding Yuval Harel, Ron Meir, Manfred Opper
- Sum-of-Squares Lower Bounds for Sparse PCA Tengyu Ma, Avi Wigderson
- Max-Margin Majority Voting for Learning from Crowds TIAN TIAN, Jun Zhu
- Learning with Incremental Iterative Regularization Lorenzo Rosasco, Silvia Villa
- Halting in Random Walk Kernels Mahito Sugiyama, Karsten Borgwardt
- MCMC for Variationally Sparse Gaussian Processes James Hensman, Alexander G. Matthews, Maurizio Filippone, Zoubin Ghahramani
- Less is More: Nyström Computational Regularization Alessandro Rudi, Raffaello Camoriano, Lorenzo Rosasco
- Infinite Factorial Dynamical Model Isabel Valera, Francisco Ruiz, Lennart Svensson, Fernando Perez-Cruz
- Regularization Path of Cross-Validation Error Lower Bounds Atsushi Shibagaki, Yoshiki Suzuki, Masayuki Karasuyama, Ichiro Takeuchi
- Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze–like Environments Dane S. Corneil, Wulfram Gerstner
- Teaching Machines to Read and Comprehend Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom
- Principal Differences Analysis: Interpretable Characterization of Differences between Distributions Jonas W. Mueller, Tommi Jaakkola
- When are Kalman-Filter Restless Bandits Indexable? Christopher R. Dance, Tomi Silander
- Segregated Graphs and Marginals of Chain Graph Models Ilya Shpitser
- Efficient Non-greedy Optimization of Decision Trees Mohammad Norouzi, Maxwell Collins, Matthew A. Johnson, David J. Fleet, Pushmeet Kohli
- Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process Ye Wang, David B. Dunson
- Inverse Reinforcement Learning with Locally Consistent Reward Functions Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet
- Communication Complexity of Distributed Convex Learning and Optimization Yossi Arjevani, Ohad Shamir
- End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, Li Deng
- Subset Selection by Pareto Optimization Chao Qian, Yang Yu, Zhi-Hua Zhou
- On the Accuracy of Self-Normalized Log-Linear Models Jacob Andreas, Maxim Rabinovich, Michael I. Jordan, Dan Klein
- Regret Lower Bound and Optimal Algorithm in Finite Stochastic Partial Monitoring Junpei Komiyama, Junya Honda, Hiroshi Nakagawa
- Is Approval Voting Optimal Given Approval Votes? Ariel D. Procaccia, Nisarg Shah
- Regressive Virtual Metric Learning Michaël Perrot, Amaury Habrard
- Analysis of Robust PCA via Local Incoherence Huishuai Zhang, Yi Zhou, Yingbin Liang
- Learning to Transduce with Unbounded Memory Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, Phil Blunsom
- Max-Margin Deep Generative Models Chongxuan Li, Jun Zhu, Tianlin Shi, Bo Zhang
- Spherical Random Features for Polynomial Kernels Jeffrey Pennington, Felix Yu, Sanjiv Kumar
- Rectified Factor Networks Djork-Arné Clevert, Andreas Mayr, Thomas Unterthiner, Sepp Hochreiter
- Learning Bayesian Networks with Thousands of Variables Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, Marco Zaffalon
- Matrix Completion Under Monotonic Single Index Models Ravi Sastry Ganti, Laura Balzano, Rebecca Willett
- Visalogy: Answering Visual Analogy Questions Fereshteh Sadeghi, C. Lawrence Zitnick, Ali Farhadi
- Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models Juho Lee, Seungjin Choi
- Streaming Min-max Hypergraph Partitioning Dan Alistarh, Jennifer Iglesias, Milan Vojnovic
- Collaboratively Learning Preferences from Ordinal Data Sewoong Oh, Kiran K. Thekumparampil, Jiaming Xu
- Biologically Inspired Dynamic Textures for Probing Motion Perception Jonathan Vacher, Andrew Isaac Meso, Laurent U. Perrinet, Gabriel Peyré
- Generative Image Modeling Using Spatial LSTMs Lucas Theis, Matthias Bethge
- Robust PCA with compressed data Wooseok Ha, Rina Foygel Barber
- Sampling from Probabilistic Submodular Models Alkis Gotovos, Hamed Hassani, Andreas Krause
- COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, Le Song
- Supervised Learning for Dynamical System Learning Ahmed Hefny, Carlton Downey, Geoffrey J. Gordon
- Regret-Based Pruning in Extensive-Form Games Noam Brown, Tuomas Sandholm
- Fast Two-Sample Testing with Analytic Representations of Probability Measures Kacper P. Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, Arthur Gretton
- Learning to Segment Object Candidates Pedro O. Pinheiro, Ronan Collobert, Piotr Dollar
- GP Kernels for Cross-Spectrum Analysis Kyle R. Ulrich, David E. Carlson, Kafui Dzirasa, Lawrence Carin
- Secure Multi-party Differential Privacy Peter Kairouz, Sewoong Oh, Pramod Viswanath
- Spatial Transformer Networks Max Jaderberg, Karen Simonyan, Andrew Zisserman, koray kavukcuoglu
- Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks Kevin Scaman, Rémi Lemonnier, Nicolas Vayatis
- Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms Yunwen Lei, Urun Dogan, Alexander Binder, Marius Kloft
- High-dimensional neural spike train analysis with generalized count linear dynamical systems YUANJUN GAO, Lars Busing, Krishna V. Shenoy, John P. Cunningham
- Learning with a Wasserstein Loss Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, Tomaso A. Poggio
- b-bit Marginal Regression Martin Slawski, Ping Li
- Natural Neural Networks Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, koray kavukcuoglu
- Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference Ted Meeds, Max Welling
- Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing Tom Goldstein, Min Li, Xiaoming Yuan
- On some provably correct cases of variational inference for topic models Pranjal Awasthi, Andrej Risteski
- Collaborative Filtering with Graph Information: Consistency and Scalable Methods Nikhil Rao, Hsiang-Fu Yu, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Combinatorial Bandits Revisited Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, marc lelarge
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning Shakir Mohamed, Danilo Jimenez Rezende
- A Structural Smoothing Framework For Robust Graph Comparison Pinar Yanardag, S.V.N. Vishwanathan
- Competitive Distribution Estimation: Why is Good-Turing Good Alon Orlitsky, Ananda Theertha Suresh
- Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction Joseph Wang, Kirill Trapeznikov, Venkatesh Saligrama
- A hybrid sampler for Poisson-Kingman mixture models Maria Lomeli, Stefano Favaro, Yee Whye Teh
- An Active Learning Framework using Sparse-Graph Codes for Sparse Polynomials and Graph Sketching Xiao Li, Kannan Ramchandran
- Local Smoothness in Variance Reduced Optimization Daniel Vainsencher, Han Liu, Tong Zhang
- Saliency, Scale and Information: Towards a Unifying Theory Shafin Rahman, Neil Bruce
- Fighting Bandits with a New Kind of Smoothness Jacob D. Abernethy, Chansoo Lee, Ambuj Tewari
- Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs Vidyashankar Sivakumar, Arindam Banerjee, Pradeep K. Ravikumar
- Spectral Norm Regularization of Orthonormal Representations for Graph Transduction Rakesh Shivanna, Bibaswan K. Chatterjee, Raman Sankaran, Chiranjib Bhattacharyya, Francis Bach
- Convolutional Networks on Graphs for Learning Molecular Fingerprints David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, Ryan P. Adams
- Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications Kai Wei, Rishabh K. Iyer, Shengjie Wang, Wenruo Bai, Jeff A. Bilmes
- Tractable Learning for Complex Probability Queries Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck
- StopWasting My Gradients: Practical SVRG Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konečný, Scott Sallinen
- Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction Been Kim, Julie A. Shah, Finale Doshi-Velez
- A Normative Theory of Adaptive Dimensionality Reduction in Neural Networks Cengiz Pehlevan, Dmitri Chklovskii
- On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators Changyou Chen, Nan Ding, Lawrence Carin
- Learning structured densities via infinite dimensional exponential families Siqi Sun, mladen kolar, Jinbo Xu
- Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu
- Variance Reduced Stochastic Gradient Descent with Neighbors Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, Brian McWilliams
- Sample Efficient Path Integral Control under Uncertainty Yunpeng Pan, Evangelos Theodorou, Michail Kontitsis
- Stochastic Expectation Propagation Yingzhen Li, José Miguel Hernández-Lobato, Richard E. Turner
- Exactness of Approximate MAP Inference in Continuous MRFs Nicholas Ruozzi
- Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients Bo Xie, Yingyu Liang, Le Song
- Generalization in Adaptive Data Analysis and Holdout Reuse Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, Aaron Roth
- Market Scoring Rules Act As Opinion Pools For Risk-Averse Agents Mithun Chakraborty, Sanmay Das
- Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Training Very Deep Networks Rupesh K. Srivastava, Klaus Greff, Juergen Schmidhuber
- Bayesian Active Model Selection with an Application to Automated Audiometry Jacob Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q. Weinberger, Dennis Barbour, John P. Cunningham
- Particle Gibbs for Infinite Hidden Markov Models Nilesh Tripuraneni, Shixiang Gu, Hong Ge, Zoubin Ghahramani
- Learning spatiotemporal trajectories from manifold-valued longitudinal data Jean-Baptiste SCHIRATTI, Stéphanie ALLASSONNIERE, Olivier Colliot, Stanley DURRLEMAN
- A Bayesian Framework for Modeling Confidence in Perceptual Decision Making Koosha Khalvati, Rajesh P. Rao
- Path-SGD: Path-Normalized Optimization in Deep Neural Networks Behnam Neyshabur, Ruslan R. Salakhutdinov, Nati Srebro
- On the consistency theory of high dimensional variable screening Xiangyu Wang, Chenlei Leng, David B. Dunson
- End-To-End Memory Networks Sainbayar Sukhbaatar, arthur szlam, Jason Weston, Rob Fergus
- Spectral Representations for Convolutional Neural Networks Oren Rippel, Jasper Snoek, Ryan P. Adams
- Online Gradient Boosting Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo
- Deep Temporal Sigmoid Belief Networks for Sequence Modeling Zhe Gan, Chunyuan Li, Ricardo Henao, David E. Carlson, Lawrence Carin
- Recognizing retinal ganglion cells in the dark Emile Richard, Georges A. Goetz, E. J. Chichilnisky
- A Theory of Decision Making Under Dynamic Context Michael Shvartsman, Vaibhav Srivastava, Jonathan D. Cohen
- A Gaussian Process Model of Quasar Spectral Energy Distributions Andrew Miller, Albert Wu, Jeff Regier, Jon McAuliffe, Dustin Lang, Mr. Prabhat, David Schlegel, Ryan P. Adams
- Hidden Technical Debt in Machine Learning Systems D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison
- Local Causal Discovery of Direct Causes and Effects Tian Gao, Qiang Ji
- High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality Zhaoran Wang, Quanquan Gu, Yang Ning, Han Liu
- Revenue Optimization against Strategic Buyers Mehryar Mohri, Andres Munoz
- Deep Convolutional Inverse Graphics Network Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, Josh Tenenbaum
- Sparse and Low-Rank Tensor Decomposition Parikshit Shah, Nikhil Rao, Gongguo Tang
- Minimax Time Series Prediction Wouter M. Koolen, Alan Malek, Peter L. Bartlett, Yasin Abbasi
- Differentially Private Learning of Structured Discrete Distributions Ilias Diakonikolas, Moritz Hardt, Ludwig Schmidt
- Variational Dropout and the Local Reparameterization Trick Avrim Blum, Nika Haghtalab, Ariel D. Procaccia
- Sample Complexity of Learning Mahalanobis Distance Metrics Nakul Verma, Kristin Branson
- Learning Wake-Sleep Recurrent Attention Models Jimmy Ba, Ruslan R. Salakhutdinov, Roger B. Grosse, Brendan J. Frey
- Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso Eunho Yang, Aurelie C. Lozano
- Testing Closeness With Unequal Sized Samples Bhaswar Bhattacharya, Gregory Valiant
- Estimating Jaccard Index with Missing Observations: A Matrix Calibration Approach Wenye Li
- Neural Adaptive Sequential Monte Carlo Shixiang Gu, Zoubin Ghahramani, Richard E. Turner
- Local Expectation Gradients for Black Box Variational Inference Michalis Titsias, Miguel Lázaro-Gredilla
- On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, Alex J. Smola
- NEXT: A System for Real-World Development, Evaluation, and Application of Active Learning Kevin G. Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard, Rob Nowak
- Super-Resolution Off the Grid Qingqing Huang, Sham M. Kakade
- Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms Christopher M. De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré, Christopher Ré
- The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors Dan Rosenbaum, Yair Weiss
- Pointer Networks Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
- Associative Memory via a Sparse Recovery Model Arya Mazumdar, Ankit Singh Rawat
- Robust Spectral Inference for Joint Stochastic Matrix Factorization Moontae Lee, David Bindel, David Mimno
- Fast, Provable Algorithms for Isotonic Regression in all L_p-norms Rasmus Kyng, Anup Rao, Sushant Sachdeva
- Adversarial Prediction Games for Multivariate Losses Hong Wang, Wei Xing, Kaiser Asif, Brian Ziebart
- Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization Xiangru Lian, Yijun Huang, Yuncheng Li, Ji Liu
- Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images Manuel Watter, Jost Springenberg, Joschka Boedecker, Martin Riedmiller
- Efficient and Parsimonious Agnostic Active Learning Tzu-Kuo Huang, Alekh Agarwal, Daniel J. Hsu, John Langford, Robert E. Schapire
- Softstar: Heuristic-Guided Probabilistic Inference Mathew Monfort, Brenden M. Lake, Brenden M. Lake, Brian Ziebart, Patrick Lucey, Josh Tenenbaum
- Grammar as a Foreign Language Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton
- Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices Martin Slawski, Ping Li, Matthias Hein
- Winner-Take-All Autoencoders Alireza Makhzani, Brendan J. Frey
- Deep Poisson Factor Modeling Ricardo Henao, Zhe Gan, James Lu, Lawrence Carin
- Bayesian Optimization with Exponential Convergence Kenji Kawaguchi, Leslie Pack Kaelbling, Tomás Lozano-Pérez
- Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning Christoph Dann, Emma Brunskill
- Learning with Relaxed Supervision Jacob Steinhardt, Percy S. Liang
- Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's Vitaly Feldman, Will Perkins, Santosh Vempala
- Accelerated Mirror Descent in Continuous and Discrete Time Walid Krichene, Alexandre Bayen, Peter L. Bartlett
- The Human Kernel Andrew G. Wilson, Christoph Dann, Chris Lucas, Eric P. Xing
- Action-Conditional Video Prediction using Deep Networks in Atari Games Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, Satinder Singh
- A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA James R. Voss, Mikhail Belkin, Luis Rademacher
- Distributed Submodular Cover: Succinctly Summarizing Massive Data Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause
- Community Detection via Measure Space Embedding Mark Kozdoba, Shie Mannor
- Basis refinement strategies for linear value function approximation in MDPs Gheorghe Comanici, Doina Precup, Prakash Panangaden
- Structured Estimation with Atomic Norms: General Bounds and Applications Sheng Chen, Arindam Banerjee
- A Complete Recipe for Stochastic Gradient MCMC Yi-An Ma, Tianqi Chen, Emily Fox
- Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff Ofer Dekel, Ronen Eldan, Tomer Koren
- Online Prediction at the Limit of Zero Temperature Mark Herbster, Stephen Pasteris, Shaona Ghosh
- Learning Continuous Control Policies by Stochastic Value Gradients Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, Yuval Tassa
- Exploring Models and Data for Image Question Answering Mengye Ren, Ryan Kiros, Richard Zemel
- Efficient and Robust Automated Machine Learning Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, Frank Hutter
- Preconditioned Spectral Descent for Deep Learning David E. Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, Volkan Cevher
- A Recurrent Latent Variable Model for Sequential Data Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, Yoshua Bengio
- Fast Convergence of Regularized Learning in Games Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire
- Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, Juergen Schmidhuber
- Reflection, Refraction, and Hamiltonian Monte Carlo Hadi Mohasel Afshar, Justin Domke
- The Consistency of Common Neighbors for Link Prediction in Stochastic Blockmodels Purnamrita Sarkar, Deepayan Chakrabarti, peter j. bickel
- Nearly Optimal Private LASSO Kunal Talwar, Abhradeep Thakurta, Li Zhang
- Convergence Analysis of Prediction Markets via Randomized Subspace Descent Rafael Frongillo, Mark D. Reid
- The Poisson Gamma Belief Network Mingyuan Zhou, Yulai Cong, Bo Chen
- Convergence rates of sub-sampled Newton methods Murat A. Erdogdu, Andrea Montanari
- No-Regret Learning in Bayesian Games Jason Hartline, Vasilis Syrgkanis, Eva Tardos
- Statistical Topological Data Analysis - A Kernel Perspective Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer
- Semi-supervised Sequence Learning Andrew M. Dai, Quoc V. Le
- Structured Transforms for Small-Footprint Deep Learning Vikas Sindhwani, Tara Sainath, Sanjiv Kumar
- Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width Christopher M. De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré
- Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm Qinqing Zheng, Ryota Tomioka
- Sample Complexity Bounds for Iterative Stochastic Policy Optimization Marin Kobilarov
- BinaryConnect: Training Deep Neural Networks with binary weights during propagations Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David
- Interactive Control of Diverse Complex Characters with Neural Networks Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel V. Todorov
- Submodular Hamming Metrics Jennifer A. Gillenwater, Rishabh K. Iyer, Bethany Lusch, Rahul Kidambi, Jeff A. Bilmes
- A Universal Primal-Dual Convex Optimization Framework Alp Yurtsever, Quoc Tran Dinh, Volkan Cevher
- Learning From Small Samples: An Analysis of Simple Decision Heuristics Özgür Şimşek, Marcus Buckmann
- Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu
- Fast and Memory Optimal Low-Rank Matrix Approximation Se-Young Yun, marc lelarge, Alexandre Proutiere
- Learnability of Influence in Networks Harikrishna Narasimhan, David C. Parkes, Yaron Singer
- Learning Causal Graphs with Small Interventions Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath
- Information-theoretic lower bounds for convex optimization with erroneous oracles Yaron Singer, Jan Vondrak
- Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial David I. Inouye, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings Piyush Rai, Changwei Hu, Ricardo Henao, Lawrence Carin
- The Self-Normalized Estimator for Counterfactual Learning Adith Swaminathan, Thorsten Joachims
- Fast Lifted MAP Inference via Partitioning Somdeb Sarkhel, Parag Singla, Vibhav G. Gogate
- Data Generation as Sequential Decision Making Philip Bachman, Doina Precup
- On Elicitation Complexity Rafael Frongillo, Ian Kash
- Decomposition Bounds for Marginal MAP Wei Ping, Qiang Liu, Alexander T. Ihler
- Discrete Rényi Classifiers Meisam Razaviyayn, Farzan Farnia, David Tse
- A class of network models recoverable by spectral clustering Yali Wan, Marina Meila
- Skip-Thought Vectors Ryan Kiros, Yukun Zhu, Ruslan R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler
- Rate-Agnostic (Causal) Structure Learning Sergey Plis, David Danks, Cynthia Freeman, Vince Calhoun
- Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric Vivien Seguy, Marco Cuturi
- Consistent Multilabel Classification Oluwasanmi O. Koyejo, Nagarajan Natarajan, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions Amar Shah, Zoubin Ghahramani
- Cornering Stationary and Restless Mixing Bandits with Remix-UCB Julien Audiffren, Liva Ralaivola
- Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data Danilo Bzdok, Michael Eickenberg, Olivier Grisel, Bertrand Thirion, Gael Varoquaux
- Gaussian Process Random Fields David Moore, Stuart J. Russell
- M-Statistic for Kernel Change-Point Detection Shuang Li, Yao Xie, Hanjun Dai, Le Song
- Adaptive Online Learning Dylan J. Foster, Alexander Rakhlin, Karthik Sridharan
- A Universal Catalyst for First-Order Optimization Hongzhou Lin, Julien Mairal, Zaid Harchaoui
- Inference for determinantal point processes without spectral knowledge Rémi Bardenet, Michalis Titsias
- Kullback-Leibler Proximal Variational Inference Mohammad E. Khan, Pierre Baque, François Fleuret, Pascal Fua
- Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization Niao He, Zaid Harchaoui
- LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements CHRISTOS THRAMPOULIDIS, Ehsan Abbasi, Babak Hassibi
- From random walks to distances on unweighted graphs Tatsunori Hashimoto, Yi Sun, Tommi Jaakkola
- Bayesian dark knowledge Anoop Korattikara Balan, Vivek Rathod, Kevin P. Murphy, Max Welling
- Matrix Completion with Noisy Side Information Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon
- Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-gamma Augmentation Scott Linderman, Matthew Johnson, Ryan P. Adams
- On-the-Job Learning with Bayesian Decision Theory Keenon Werling, Arun Tejasvi Chaganty, Percy S. Liang, Christopher D. Manning
- Calibrated Structured Prediction Volodymyr Kuleshov, Percy S. Liang
- Learning Structured Output Representation using Deep Conditional Generative Models Kihyuk Sohn, Honglak Lee, Xinchen Yan
- Time-Sensitive Recommendation From Recurrent User Activities Nan Du, Yichen Wang, Niao He, Jimeng Sun, Le Song
- Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels Felipe Tobar, Thang D. Bui, Richard E. Turner
- A Market Framework for Eliciting Private Data Bo Waggoner, Rafael Frongillo, Jacob D. Abernethy
- Lifted Inference Rules With Constraints Happy Mittal, Anuj Mahajan, Vibhav G. Gogate, Parag Singla
- Gradient Estimation Using Stochastic Computation Graphs John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel
- Model-Based Relative Entropy Stochastic Search Abbas Abdolmaleki, Rudolf Lioutikov, Jan R. Peters, Nuno Lau, Luis Pualo Reis, Gerhard Neumann
- Semi-supervised Learning with Ladder Networks Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, Tapani Raiko
- Embedding Inference for Structured Multilabel Prediction Farzaneh Mirzazadeh, Siamak Ravanbakhsh, Nan Ding, Dale Schuurmans
- Copula variational inference Dustin Tran, David Blei, Edo M. Airoldi
- Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction Kisuk Lee, Aleksandar Zlateski, Vishwanathan Ashwin, H. Sebastian Seung
- A Dual Augmented Block Minimization Framework for Learning with Limited Memory Ian En-Hsu Yen, Shan-Wei Lin, Shou-De Lin
- Optimal Testing for Properties of Distributions Jayadev Acharya, Constantinos Daskalakis, Gautam C. Kamath
- Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, James M. Rehg
- Expectation Particle Belief Propagation Thibaut Lienart, Yee Whye Teh, Arnaud Doucet
- Latent Bayesian melding for integrating individual and population models Mingjun Zhong, Nigel Goddard, Charles Sutton